Normalized defining polynomial
\(x^{22} - x^{21} + x^{20} + x^{19} + x^{18} + 5 x^{17} - 11 x^{16} + 6 x^{15} + 19 x^{14} - 22 x^{13} - 4 x^{12} + 6 x^{11} + 13 x^{10} + 26 x^{9} - 75 x^{8} - 11 x^{7} + 101 x^{6} - 32 x^{5} - 59 x^{4} + 28 x^{3} + 15 x^{2} - 6 x - 1\)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-1897242698910438481935564683\)\(\medspace = -\,47147\cdot 200601609583^{2}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $17.37$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $47147, 200601609583$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{23} a^{20} + \frac{5}{23} a^{19} - \frac{9}{23} a^{18} - \frac{7}{23} a^{16} + \frac{9}{23} a^{15} + \frac{1}{23} a^{14} - \frac{3}{23} a^{13} + \frac{7}{23} a^{12} + \frac{2}{23} a^{11} + \frac{4}{23} a^{10} - \frac{4}{23} a^{9} - \frac{10}{23} a^{8} + \frac{11}{23} a^{7} + \frac{9}{23} a^{5} - \frac{6}{23} a^{4} + \frac{9}{23} a^{3} + \frac{5}{23} a^{2} - \frac{3}{23} a + \frac{4}{23}$, $\frac{1}{140492380027} a^{21} - \frac{489918049}{140492380027} a^{20} + \frac{1670174114}{140492380027} a^{19} + \frac{64023947760}{140492380027} a^{18} - \frac{15049179365}{140492380027} a^{17} - \frac{50331626752}{140492380027} a^{16} + \frac{60766032187}{140492380027} a^{15} - \frac{59800005798}{140492380027} a^{14} + \frac{70000161927}{140492380027} a^{13} - \frac{66127248310}{140492380027} a^{12} + \frac{4594787493}{140492380027} a^{11} - \frac{2545358882}{6108364349} a^{10} + \frac{63508459473}{140492380027} a^{9} - \frac{43533025151}{140492380027} a^{8} + \frac{40914747276}{140492380027} a^{7} + \frac{51904774829}{140492380027} a^{6} - \frac{23326460387}{140492380027} a^{5} - \frac{2514555658}{140492380027} a^{4} - \frac{30149135848}{140492380027} a^{3} - \frac{13950411235}{140492380027} a^{2} - \frac{48112699384}{140492380027} a - \frac{46026854520}{140492380027}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 64048.1745685 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 81749606400 |
The 752 conjugacy class representatives for t22n53 are not computed |
Character table for t22n53 is not computed |
Intermediate fields
11.5.200601609583.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $22$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | $18{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
47147 | Data not computed | ||||||
200601609583 | Data not computed |