Normalized defining polynomial
\( x^{22} - 3 x^{21} - 4 x^{20} + 21 x^{19} - 34 x^{18} - 64 x^{17} + 209 x^{16} - 79 x^{15} - 626 x^{14} + 986 x^{13} + 469 x^{12} - 2461 x^{11} + 890 x^{10} + 2535 x^{9} - 360 x^{8} - 4500 x^{7} - 1390 x^{6} + 7497 x^{5} - 2384 x^{4} - 6847 x^{3} + 1939 x^{2} + 3881 x - 2897 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{15141765365907803090604556432892046781164355933} a^{21} - \frac{352564206449829646559521974032580753689142599}{15141765365907803090604556432892046781164355933} a^{20} - \frac{221983485280962726998609723127622495161538457}{15141765365907803090604556432892046781164355933} a^{19} + \frac{6187691145206230956993152542458907723632679429}{15141765365907803090604556432892046781164355933} a^{18} - \frac{1700183661803413555508368894840178236030914957}{15141765365907803090604556432892046781164355933} a^{17} + \frac{4445281618680528016657829605171427843602328313}{15141765365907803090604556432892046781164355933} a^{16} - \frac{1988526930235837716172949700578608944995828492}{15141765365907803090604556432892046781164355933} a^{15} - \frac{4410905905603489411225984835331209974535948223}{15141765365907803090604556432892046781164355933} a^{14} - \frac{9142670649423523462140800141000574902640456}{322165220551229852991586307082809505982220339} a^{13} + \frac{696043843736455135819471507984489914362981691}{15141765365907803090604556432892046781164355933} a^{12} - \frac{4534811716938970373871436701814983224768969072}{15141765365907803090604556432892046781164355933} a^{11} - \frac{5407821327102780823272872170254264199661871540}{15141765365907803090604556432892046781164355933} a^{10} + \frac{7231697413126652547320758153571050138748890556}{15141765365907803090604556432892046781164355933} a^{9} + \frac{718295411600205942393190088530727901166713001}{15141765365907803090604556432892046781164355933} a^{8} + \frac{3101156820664651940465861715497566453186956458}{15141765365907803090604556432892046781164355933} a^{7} + \frac{30785525559921108192346331554105586392734019}{322165220551229852991586307082809505982220339} a^{6} - \frac{5823850638814697129607329587622999261238059836}{15141765365907803090604556432892046781164355933} a^{5} - \frac{899168788292962420656355254274760591254120439}{15141765365907803090604556432892046781164355933} a^{4} + \frac{87149648528613766369613369546321120419929309}{322165220551229852991586307082809505982220339} a^{3} - \frac{5377714192721055041329834318524438013080249006}{15141765365907803090604556432892046781164355933} a^{2} + \frac{3272707107350849589747191482005141924394541313}{15141765365907803090604556432892046781164355933} a - \frac{3821608333460023257590376740593150417047339978}{15141765365907803090604556432892046781164355933}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18036839.011 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||