Normalized defining polynomial
\( x^{22} + 22 x^{20} - 44 x^{19} + 308 x^{18} - 682 x^{17} + 5148 x^{16} - 4884 x^{15} + 20746 x^{14} - 37576 x^{13} + 458128 x^{12} + 582788 x^{11} + 2492600 x^{10} - 5616732 x^{9} + 12766776 x^{8} + 72829196 x^{7} + 27797264 x^{6} - 125806824 x^{5} - 187011000 x^{4} - 118806292 x^{3} - 39878476 x^{2} - 6794304 x - 306180 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1620949848995907632875795273183398788595712=-\,2^{22}\cdot 7^{15}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{22} a^{11} + \frac{2}{11}$, $\frac{1}{22} a^{12} + \frac{2}{11} a$, $\frac{1}{22} a^{13} + \frac{2}{11} a^{2}$, $\frac{1}{22} a^{14} + \frac{2}{11} a^{3}$, $\frac{1}{22} a^{15} + \frac{2}{11} a^{4}$, $\frac{1}{22} a^{16} + \frac{2}{11} a^{5}$, $\frac{1}{22} a^{17} + \frac{2}{11} a^{6}$, $\frac{1}{22} a^{18} + \frac{2}{11} a^{7}$, $\frac{1}{22} a^{19} + \frac{2}{11} a^{8}$, $\frac{1}{44} a^{20} - \frac{1}{2} a^{10} - \frac{9}{22} a^{9}$, $\frac{1}{78115271642422162705994001394951729654509606865530764376153036767646411313774788} a^{21} - \frac{43714757050039913776332293143579446552285671071122039421544870240073592382584}{6509605970201846892166166782912644137875800572127563698012753063970534276147899} a^{20} - \frac{18325805191438241392745302644291751752008706736543903341720349029159054647141}{3550694165564643759363363699770533166114073039342307471643319853074836877898854} a^{19} - \frac{433281707425423172421936521370888658740330637172443417170021787731514602180367}{39057635821211081352997000697475864827254803432765382188076518383823205656887394} a^{18} - \frac{40322264487363860474160760983453375950421957252117477926355206222565412523645}{1775347082782321879681681849885266583057036519671153735821659926537418438949427} a^{17} + \frac{70350420242514980130112324486135175820851402529432610471794935908435518683933}{3550694165564643759363363699770533166114073039342307471643319853074836877898854} a^{16} + \frac{181364965866376201331032764152041144272221020900147204084662175411360206842237}{13019211940403693784332333565825288275751601144255127396025506127941068552295798} a^{15} - \frac{18067459721477506076789345856900784190546923210862713819814323687573199213281}{13019211940403693784332333565825288275751601144255127396025506127941068552295798} a^{14} - \frac{397171339034477042319953247778754667639728087814915882365779339106515713642865}{39057635821211081352997000697475864827254803432765382188076518383823205656887394} a^{13} - \frac{307701298574441923496278816304128637203893483122889834367993192276198998068149}{19528817910605540676498500348737932413627401716382691094038259191911602828443697} a^{12} - \frac{277112324356223853156891662198558008029053814316283903613823053334630774047626}{19528817910605540676498500348737932413627401716382691094038259191911602828443697} a^{11} + \frac{19017364966978293864867320136542761665913017429707961080001603149845040003667811}{39057635821211081352997000697475864827254803432765382188076518383823205656887394} a^{10} + \frac{9443561862709998572119698959399843465502074256481274721477227013084363594088469}{19528817910605540676498500348737932413627401716382691094038259191911602828443697} a^{9} - \frac{211619147545062975325650574745351454538509194459620551245599268475788608864339}{591782360927440626560560616628422194352345506557051245273886642179139479649809} a^{8} + \frac{1311096612977959685343242690910563296952587333054022866884865379056435313118005}{6509605970201846892166166782912644137875800572127563698012753063970534276147899} a^{7} + \frac{709485080871419975564978579205667029702764274103274721106625189921464941353284}{1775347082782321879681681849885266583057036519671153735821659926537418438949427} a^{6} - \frac{86822422598196993316041405977451886144745380908528286623426109227000377324561}{1775347082782321879681681849885266583057036519671153735821659926537418438949427} a^{5} + \frac{3163625507264119419993451398549964456747868145331374816747787321962930637927394}{6509605970201846892166166782912644137875800572127563698012753063970534276147899} a^{4} + \frac{2423382785426270844185965098919852635890952556997559349043806520700837647737860}{6509605970201846892166166782912644137875800572127563698012753063970534276147899} a^{3} + \frac{5442667675313936654723442470104976928302101303724172057140981071813352420242418}{19528817910605540676498500348737932413627401716382691094038259191911602828443697} a^{2} - \frac{5445272759294411331438486145719505775928291753685358380489385908330275526734346}{19528817910605540676498500348737932413627401716382691094038259191911602828443697} a - \frac{1996695945860469599396011181040669918505529064615006850385565487872380838079988}{6509605970201846892166166782912644137875800572127563698012753063970534276147899}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17902679661000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |