Properties

Label 22.4.153...375.1
Degree $22$
Signature $[4, 9]$
Discriminant $-1.533\times 10^{27}$
Root discriminant \(17.21\)
Ramified primes $5,7,83,127,997$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{11}.A_{11}$ (as 22T52)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1)
 
gp: K = bnfinit(y^22 - 2*y^21 + 7*y^20 - 20*y^19 + 38*y^18 - 74*y^17 + 107*y^16 - 167*y^15 + 185*y^14 - 284*y^13 + 308*y^12 - 417*y^11 + 466*y^10 - 462*y^9 + 446*y^8 - 292*y^7 + 170*y^6 - 55*y^5 - 7*y^4 + 11*y^3 - 8*y^2 + y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1)
 

\( x^{22} - 2 x^{21} + 7 x^{20} - 20 x^{19} + 38 x^{18} - 74 x^{17} + 107 x^{16} - 167 x^{15} + 185 x^{14} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1533107758369291702785569375\) \(\medspace = -\,5^{4}\cdot 7^{4}\cdot 83^{5}\cdot 127^{4}\cdot 997\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.21\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}7^{1/2}83^{5/6}127^{2/3}997^{1/2}\approx 187563.85877253$
Ramified primes:   \(5\), \(7\), \(83\), \(127\), \(997\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-82751}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{49\!\cdots\!55}a^{21}-\frac{24\!\cdots\!48}{49\!\cdots\!55}a^{20}+\frac{45\!\cdots\!74}{98\!\cdots\!31}a^{19}+\frac{17\!\cdots\!68}{98\!\cdots\!31}a^{18}-\frac{13\!\cdots\!82}{49\!\cdots\!55}a^{17}-\frac{16\!\cdots\!87}{49\!\cdots\!55}a^{16}+\frac{42\!\cdots\!99}{49\!\cdots\!55}a^{15}-\frac{17\!\cdots\!16}{49\!\cdots\!55}a^{14}+\frac{77\!\cdots\!16}{49\!\cdots\!55}a^{13}-\frac{39\!\cdots\!46}{98\!\cdots\!31}a^{12}+\frac{63\!\cdots\!58}{49\!\cdots\!55}a^{11}+\frac{81\!\cdots\!52}{98\!\cdots\!31}a^{10}+\frac{10\!\cdots\!01}{49\!\cdots\!55}a^{9}+\frac{78\!\cdots\!32}{49\!\cdots\!55}a^{8}-\frac{18\!\cdots\!21}{49\!\cdots\!55}a^{7}-\frac{23\!\cdots\!26}{49\!\cdots\!55}a^{6}-\frac{24\!\cdots\!79}{49\!\cdots\!55}a^{5}-\frac{11\!\cdots\!16}{49\!\cdots\!55}a^{4}+\frac{24\!\cdots\!29}{49\!\cdots\!55}a^{3}-\frac{41\!\cdots\!63}{49\!\cdots\!55}a^{2}-\frac{38\!\cdots\!28}{98\!\cdots\!31}a+\frac{90\!\cdots\!06}{49\!\cdots\!55}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!84}{98\!\cdots\!31}a^{21}-\frac{10\!\cdots\!91}{98\!\cdots\!31}a^{20}+\frac{32\!\cdots\!99}{98\!\cdots\!31}a^{19}-\frac{10\!\cdots\!50}{98\!\cdots\!31}a^{18}+\frac{19\!\cdots\!85}{98\!\cdots\!31}a^{17}-\frac{38\!\cdots\!06}{98\!\cdots\!31}a^{16}+\frac{60\!\cdots\!52}{98\!\cdots\!31}a^{15}-\frac{91\!\cdots\!86}{98\!\cdots\!31}a^{14}+\frac{11\!\cdots\!54}{98\!\cdots\!31}a^{13}-\frac{15\!\cdots\!87}{98\!\cdots\!31}a^{12}+\frac{20\!\cdots\!44}{98\!\cdots\!31}a^{11}-\frac{23\!\cdots\!13}{98\!\cdots\!31}a^{10}+\frac{30\!\cdots\!33}{98\!\cdots\!31}a^{9}-\frac{29\!\cdots\!36}{98\!\cdots\!31}a^{8}+\frac{30\!\cdots\!49}{98\!\cdots\!31}a^{7}-\frac{24\!\cdots\!60}{98\!\cdots\!31}a^{6}+\frac{15\!\cdots\!45}{98\!\cdots\!31}a^{5}-\frac{10\!\cdots\!53}{98\!\cdots\!31}a^{4}+\frac{31\!\cdots\!00}{98\!\cdots\!31}a^{3}-\frac{84\!\cdots\!56}{98\!\cdots\!31}a^{2}-\frac{95\!\cdots\!32}{98\!\cdots\!31}a+\frac{37\!\cdots\!99}{98\!\cdots\!31}$, $\frac{89\!\cdots\!28}{98\!\cdots\!31}a^{21}-\frac{10\!\cdots\!02}{98\!\cdots\!31}a^{20}+\frac{47\!\cdots\!72}{98\!\cdots\!31}a^{19}-\frac{12\!\cdots\!53}{98\!\cdots\!31}a^{18}+\frac{19\!\cdots\!76}{98\!\cdots\!31}a^{17}-\frac{37\!\cdots\!99}{98\!\cdots\!31}a^{16}+\frac{39\!\cdots\!55}{98\!\cdots\!31}a^{15}-\frac{69\!\cdots\!36}{98\!\cdots\!31}a^{14}+\frac{39\!\cdots\!78}{98\!\cdots\!31}a^{13}-\frac{11\!\cdots\!92}{98\!\cdots\!31}a^{12}+\frac{59\!\cdots\!81}{98\!\cdots\!31}a^{11}-\frac{14\!\cdots\!42}{98\!\cdots\!31}a^{10}+\frac{94\!\cdots\!39}{98\!\cdots\!31}a^{9}-\frac{76\!\cdots\!07}{98\!\cdots\!31}a^{8}+\frac{44\!\cdots\!77}{98\!\cdots\!31}a^{7}+\frac{65\!\cdots\!42}{98\!\cdots\!31}a^{6}-\frac{61\!\cdots\!77}{98\!\cdots\!31}a^{5}+\frac{81\!\cdots\!08}{98\!\cdots\!31}a^{4}-\frac{37\!\cdots\!55}{98\!\cdots\!31}a^{3}+\frac{10\!\cdots\!90}{98\!\cdots\!31}a^{2}+\frac{23\!\cdots\!39}{98\!\cdots\!31}a-\frac{33\!\cdots\!82}{98\!\cdots\!31}$, $\frac{41\!\cdots\!72}{98\!\cdots\!31}a^{21}-\frac{43\!\cdots\!58}{98\!\cdots\!31}a^{20}+\frac{20\!\cdots\!00}{98\!\cdots\!31}a^{19}-\frac{56\!\cdots\!72}{98\!\cdots\!31}a^{18}+\frac{78\!\cdots\!21}{98\!\cdots\!31}a^{17}-\frac{15\!\cdots\!53}{98\!\cdots\!31}a^{16}+\frac{15\!\cdots\!15}{98\!\cdots\!31}a^{15}-\frac{27\!\cdots\!69}{98\!\cdots\!31}a^{14}+\frac{13\!\cdots\!37}{98\!\cdots\!31}a^{13}-\frac{47\!\cdots\!22}{98\!\cdots\!31}a^{12}+\frac{22\!\cdots\!77}{98\!\cdots\!31}a^{11}-\frac{54\!\cdots\!59}{98\!\cdots\!31}a^{10}+\frac{39\!\cdots\!58}{98\!\cdots\!31}a^{9}-\frac{14\!\cdots\!23}{98\!\cdots\!31}a^{8}+\frac{16\!\cdots\!34}{98\!\cdots\!31}a^{7}+\frac{39\!\cdots\!54}{98\!\cdots\!31}a^{6}-\frac{32\!\cdots\!94}{98\!\cdots\!31}a^{5}+\frac{30\!\cdots\!13}{98\!\cdots\!31}a^{4}-\frac{19\!\cdots\!35}{98\!\cdots\!31}a^{3}+\frac{22\!\cdots\!43}{98\!\cdots\!31}a^{2}-\frac{97\!\cdots\!63}{98\!\cdots\!31}a-\frac{72\!\cdots\!43}{98\!\cdots\!31}$, $\frac{98\!\cdots\!41}{98\!\cdots\!31}a^{21}-\frac{17\!\cdots\!42}{98\!\cdots\!31}a^{20}+\frac{61\!\cdots\!34}{98\!\cdots\!31}a^{19}-\frac{17\!\cdots\!69}{98\!\cdots\!31}a^{18}+\frac{31\!\cdots\!61}{98\!\cdots\!31}a^{17}-\frac{59\!\cdots\!64}{98\!\cdots\!31}a^{16}+\frac{78\!\cdots\!30}{98\!\cdots\!31}a^{15}-\frac{12\!\cdots\!81}{98\!\cdots\!31}a^{14}+\frac{11\!\cdots\!34}{98\!\cdots\!31}a^{13}-\frac{19\!\cdots\!02}{98\!\cdots\!31}a^{12}+\frac{19\!\cdots\!26}{98\!\cdots\!31}a^{11}-\frac{27\!\cdots\!07}{98\!\cdots\!31}a^{10}+\frac{28\!\cdots\!96}{98\!\cdots\!31}a^{9}-\frac{25\!\cdots\!23}{98\!\cdots\!31}a^{8}+\frac{21\!\cdots\!20}{98\!\cdots\!31}a^{7}-\frac{82\!\cdots\!58}{98\!\cdots\!31}a^{6}+\frac{17\!\cdots\!78}{98\!\cdots\!31}a^{5}+\frac{44\!\cdots\!51}{98\!\cdots\!31}a^{4}-\frac{39\!\cdots\!97}{98\!\cdots\!31}a^{3}+\frac{15\!\cdots\!38}{98\!\cdots\!31}a^{2}-\frac{41\!\cdots\!41}{98\!\cdots\!31}a-\frac{21\!\cdots\!88}{98\!\cdots\!31}$, $\frac{81\!\cdots\!36}{98\!\cdots\!31}a^{21}-\frac{80\!\cdots\!83}{98\!\cdots\!31}a^{20}+\frac{43\!\cdots\!09}{98\!\cdots\!31}a^{19}-\frac{11\!\cdots\!10}{98\!\cdots\!31}a^{18}+\frac{16\!\cdots\!56}{98\!\cdots\!31}a^{17}-\frac{35\!\cdots\!38}{98\!\cdots\!31}a^{16}+\frac{38\!\cdots\!40}{98\!\cdots\!31}a^{15}-\frac{71\!\cdots\!72}{98\!\cdots\!31}a^{14}+\frac{45\!\cdots\!40}{98\!\cdots\!31}a^{13}-\frac{13\!\cdots\!64}{98\!\cdots\!31}a^{12}+\frac{69\!\cdots\!59}{98\!\cdots\!31}a^{11}-\frac{17\!\cdots\!54}{98\!\cdots\!31}a^{10}+\frac{12\!\cdots\!43}{98\!\cdots\!31}a^{9}-\frac{11\!\cdots\!08}{98\!\cdots\!31}a^{8}+\frac{11\!\cdots\!46}{98\!\cdots\!31}a^{7}-\frac{84\!\cdots\!54}{98\!\cdots\!31}a^{6}+\frac{15\!\cdots\!28}{98\!\cdots\!31}a^{5}+\frac{28\!\cdots\!40}{98\!\cdots\!31}a^{4}-\frac{15\!\cdots\!14}{98\!\cdots\!31}a^{3}+\frac{50\!\cdots\!80}{98\!\cdots\!31}a^{2}-\frac{39\!\cdots\!92}{98\!\cdots\!31}a-\frac{12\!\cdots\!23}{98\!\cdots\!31}$, $\frac{45\!\cdots\!79}{49\!\cdots\!55}a^{21}-\frac{14\!\cdots\!72}{49\!\cdots\!55}a^{20}+\frac{84\!\cdots\!29}{98\!\cdots\!31}a^{19}-\frac{25\!\cdots\!47}{98\!\cdots\!31}a^{18}+\frac{27\!\cdots\!42}{49\!\cdots\!55}a^{17}-\frac{53\!\cdots\!98}{49\!\cdots\!55}a^{16}+\frac{87\!\cdots\!11}{49\!\cdots\!55}a^{15}-\frac{13\!\cdots\!64}{49\!\cdots\!55}a^{14}+\frac{17\!\cdots\!69}{49\!\cdots\!55}a^{13}-\frac{44\!\cdots\!31}{98\!\cdots\!31}a^{12}+\frac{29\!\cdots\!47}{49\!\cdots\!55}a^{11}-\frac{69\!\cdots\!52}{98\!\cdots\!31}a^{10}+\frac{43\!\cdots\!89}{49\!\cdots\!55}a^{9}-\frac{45\!\cdots\!67}{49\!\cdots\!55}a^{8}+\frac{44\!\cdots\!11}{49\!\cdots\!55}a^{7}-\frac{37\!\cdots\!49}{49\!\cdots\!55}a^{6}+\frac{23\!\cdots\!39}{49\!\cdots\!55}a^{5}-\frac{12\!\cdots\!79}{49\!\cdots\!55}a^{4}+\frac{32\!\cdots\!56}{49\!\cdots\!55}a^{3}-\frac{29\!\cdots\!12}{49\!\cdots\!55}a^{2}-\frac{10\!\cdots\!31}{98\!\cdots\!31}a+\frac{29\!\cdots\!44}{49\!\cdots\!55}$, $\frac{23\!\cdots\!84}{49\!\cdots\!55}a^{21}-\frac{38\!\cdots\!97}{49\!\cdots\!55}a^{20}+\frac{30\!\cdots\!27}{98\!\cdots\!31}a^{19}-\frac{83\!\cdots\!45}{98\!\cdots\!31}a^{18}+\frac{76\!\cdots\!67}{49\!\cdots\!55}a^{17}-\frac{15\!\cdots\!78}{49\!\cdots\!55}a^{16}+\frac{19\!\cdots\!76}{49\!\cdots\!55}a^{15}-\frac{32\!\cdots\!89}{49\!\cdots\!55}a^{14}+\frac{31\!\cdots\!74}{49\!\cdots\!55}a^{13}-\frac{11\!\cdots\!33}{98\!\cdots\!31}a^{12}+\frac{50\!\cdots\!92}{49\!\cdots\!55}a^{11}-\frac{16\!\cdots\!90}{98\!\cdots\!31}a^{10}+\frac{76\!\cdots\!14}{49\!\cdots\!55}a^{9}-\frac{81\!\cdots\!62}{49\!\cdots\!55}a^{8}+\frac{71\!\cdots\!11}{49\!\cdots\!55}a^{7}-\frac{37\!\cdots\!09}{49\!\cdots\!55}a^{6}+\frac{21\!\cdots\!94}{49\!\cdots\!55}a^{5}+\frac{29\!\cdots\!31}{49\!\cdots\!55}a^{4}-\frac{41\!\cdots\!64}{49\!\cdots\!55}a^{3}+\frac{24\!\cdots\!63}{49\!\cdots\!55}a^{2}-\frac{22\!\cdots\!79}{98\!\cdots\!31}a-\frac{10\!\cdots\!46}{49\!\cdots\!55}$, $\frac{21\!\cdots\!34}{49\!\cdots\!55}a^{21}-\frac{49\!\cdots\!67}{49\!\cdots\!55}a^{20}+\frac{31\!\cdots\!80}{98\!\cdots\!31}a^{19}-\frac{94\!\cdots\!29}{98\!\cdots\!31}a^{18}+\frac{94\!\cdots\!02}{49\!\cdots\!55}a^{17}-\frac{18\!\cdots\!88}{49\!\cdots\!55}a^{16}+\frac{28\!\cdots\!51}{49\!\cdots\!55}a^{15}-\frac{43\!\cdots\!74}{49\!\cdots\!55}a^{14}+\frac{53\!\cdots\!64}{49\!\cdots\!55}a^{13}-\frac{15\!\cdots\!68}{98\!\cdots\!31}a^{12}+\frac{91\!\cdots\!07}{49\!\cdots\!55}a^{11}-\frac{23\!\cdots\!36}{98\!\cdots\!31}a^{10}+\frac{13\!\cdots\!59}{49\!\cdots\!55}a^{9}-\frac{14\!\cdots\!37}{49\!\cdots\!55}a^{8}+\frac{13\!\cdots\!01}{49\!\cdots\!55}a^{7}-\frac{11\!\cdots\!89}{49\!\cdots\!55}a^{6}+\frac{73\!\cdots\!54}{49\!\cdots\!55}a^{5}-\frac{41\!\cdots\!59}{49\!\cdots\!55}a^{4}+\frac{15\!\cdots\!16}{49\!\cdots\!55}a^{3}-\frac{35\!\cdots\!97}{49\!\cdots\!55}a^{2}+\frac{10\!\cdots\!28}{98\!\cdots\!31}a+\frac{70\!\cdots\!64}{49\!\cdots\!55}$, $\frac{14\!\cdots\!16}{49\!\cdots\!55}a^{21}-\frac{38\!\cdots\!28}{49\!\cdots\!55}a^{20}+\frac{19\!\cdots\!92}{98\!\cdots\!31}a^{19}-\frac{63\!\cdots\!75}{98\!\cdots\!31}a^{18}+\frac{59\!\cdots\!38}{49\!\cdots\!55}a^{17}-\frac{10\!\cdots\!97}{49\!\cdots\!55}a^{16}+\frac{15\!\cdots\!69}{49\!\cdots\!55}a^{15}-\frac{21\!\cdots\!36}{49\!\cdots\!55}a^{14}+\frac{25\!\cdots\!36}{49\!\cdots\!55}a^{13}-\frac{63\!\cdots\!16}{98\!\cdots\!31}a^{12}+\frac{46\!\cdots\!13}{49\!\cdots\!55}a^{11}-\frac{89\!\cdots\!26}{98\!\cdots\!31}a^{10}+\frac{64\!\cdots\!86}{49\!\cdots\!55}a^{9}-\frac{49\!\cdots\!83}{49\!\cdots\!55}a^{8}+\frac{44\!\cdots\!24}{49\!\cdots\!55}a^{7}-\frac{30\!\cdots\!71}{49\!\cdots\!55}a^{6}+\frac{96\!\cdots\!66}{49\!\cdots\!55}a^{5}-\frac{38\!\cdots\!66}{49\!\cdots\!55}a^{4}-\frac{33\!\cdots\!26}{49\!\cdots\!55}a^{3}+\frac{76\!\cdots\!37}{49\!\cdots\!55}a^{2}+\frac{19\!\cdots\!30}{98\!\cdots\!31}a+\frac{82\!\cdots\!51}{49\!\cdots\!55}$, $\frac{50\!\cdots\!91}{49\!\cdots\!55}a^{21}-\frac{11\!\cdots\!38}{49\!\cdots\!55}a^{20}+\frac{70\!\cdots\!13}{98\!\cdots\!31}a^{19}-\frac{20\!\cdots\!21}{98\!\cdots\!31}a^{18}+\frac{19\!\cdots\!63}{49\!\cdots\!55}a^{17}-\frac{37\!\cdots\!97}{49\!\cdots\!55}a^{16}+\frac{53\!\cdots\!09}{49\!\cdots\!55}a^{15}-\frac{80\!\cdots\!41}{49\!\cdots\!55}a^{14}+\frac{90\!\cdots\!66}{49\!\cdots\!55}a^{13}-\frac{26\!\cdots\!37}{98\!\cdots\!31}a^{12}+\frac{15\!\cdots\!48}{49\!\cdots\!55}a^{11}-\frac{38\!\cdots\!20}{98\!\cdots\!31}a^{10}+\frac{22\!\cdots\!81}{49\!\cdots\!55}a^{9}-\frac{21\!\cdots\!43}{49\!\cdots\!55}a^{8}+\frac{19\!\cdots\!74}{49\!\cdots\!55}a^{7}-\frac{12\!\cdots\!56}{49\!\cdots\!55}a^{6}+\frac{53\!\cdots\!01}{49\!\cdots\!55}a^{5}-\frac{90\!\cdots\!21}{49\!\cdots\!55}a^{4}-\frac{66\!\cdots\!66}{49\!\cdots\!55}a^{3}+\frac{51\!\cdots\!72}{49\!\cdots\!55}a^{2}-\frac{32\!\cdots\!20}{98\!\cdots\!31}a-\frac{14\!\cdots\!24}{49\!\cdots\!55}$, $\frac{10\!\cdots\!33}{49\!\cdots\!55}a^{21}-\frac{22\!\cdots\!59}{49\!\cdots\!55}a^{20}+\frac{15\!\cdots\!45}{98\!\cdots\!31}a^{19}-\frac{44\!\cdots\!22}{98\!\cdots\!31}a^{18}+\frac{43\!\cdots\!94}{49\!\cdots\!55}a^{17}-\frac{85\!\cdots\!06}{49\!\cdots\!55}a^{16}+\frac{12\!\cdots\!02}{49\!\cdots\!55}a^{15}-\frac{19\!\cdots\!43}{49\!\cdots\!55}a^{14}+\frac{23\!\cdots\!88}{49\!\cdots\!55}a^{13}-\frac{69\!\cdots\!04}{98\!\cdots\!31}a^{12}+\frac{38\!\cdots\!49}{49\!\cdots\!55}a^{11}-\frac{10\!\cdots\!17}{98\!\cdots\!31}a^{10}+\frac{58\!\cdots\!88}{49\!\cdots\!55}a^{9}-\frac{60\!\cdots\!24}{49\!\cdots\!55}a^{8}+\frac{59\!\cdots\!22}{49\!\cdots\!55}a^{7}-\frac{43\!\cdots\!08}{49\!\cdots\!55}a^{6}+\frac{27\!\cdots\!78}{49\!\cdots\!55}a^{5}-\frac{12\!\cdots\!38}{49\!\cdots\!55}a^{4}+\frac{32\!\cdots\!92}{49\!\cdots\!55}a^{3}-\frac{12\!\cdots\!59}{49\!\cdots\!55}a^{2}-\frac{10\!\cdots\!33}{98\!\cdots\!31}a+\frac{18\!\cdots\!93}{49\!\cdots\!55}$, $\frac{49\!\cdots\!64}{98\!\cdots\!31}a^{21}-\frac{65\!\cdots\!77}{98\!\cdots\!31}a^{20}+\frac{24\!\cdots\!63}{98\!\cdots\!31}a^{19}-\frac{69\!\cdots\!15}{98\!\cdots\!31}a^{18}+\frac{10\!\cdots\!41}{98\!\cdots\!31}a^{17}-\frac{17\!\cdots\!14}{98\!\cdots\!31}a^{16}+\frac{17\!\cdots\!30}{98\!\cdots\!31}a^{15}-\frac{26\!\cdots\!33}{98\!\cdots\!31}a^{14}+\frac{71\!\cdots\!75}{98\!\cdots\!31}a^{13}-\frac{35\!\cdots\!50}{98\!\cdots\!31}a^{12}+\frac{11\!\cdots\!99}{98\!\cdots\!31}a^{11}-\frac{32\!\cdots\!47}{98\!\cdots\!31}a^{10}+\frac{12\!\cdots\!54}{98\!\cdots\!31}a^{9}+\frac{27\!\cdots\!78}{98\!\cdots\!31}a^{8}-\frac{50\!\cdots\!35}{98\!\cdots\!31}a^{7}+\frac{10\!\cdots\!50}{98\!\cdots\!31}a^{6}-\frac{10\!\cdots\!99}{98\!\cdots\!31}a^{5}+\frac{83\!\cdots\!81}{98\!\cdots\!31}a^{4}-\frac{40\!\cdots\!76}{98\!\cdots\!31}a^{3}+\frac{79\!\cdots\!53}{98\!\cdots\!31}a^{2}+\frac{22\!\cdots\!37}{98\!\cdots\!31}a-\frac{28\!\cdots\!02}{98\!\cdots\!31}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 56909.7191275 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{9}\cdot 56909.7191275 \cdot 1}{2\cdot\sqrt{1533107758369291702785569375}}\cr\approx \mathstrut & 0.177463443250 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 2*x^21 + 7*x^20 - 20*x^19 + 38*x^18 - 74*x^17 + 107*x^16 - 167*x^15 + 185*x^14 - 284*x^13 + 308*x^12 - 417*x^11 + 466*x^10 - 462*x^9 + 446*x^8 - 292*x^7 + 170*x^6 - 55*x^5 - 7*x^4 + 11*x^3 - 8*x^2 + x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{11}.A_{11}$ (as 22T52):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 40874803200
The 400 conjugacy class representatives for $C_2^{11}.A_{11}$ are not computed
Character table for $C_2^{11}.A_{11}$ is not computed

Intermediate fields

11.3.136113034225.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 44 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.11.0.1}{11} }^{2}$ ${\href{/padicField/3.11.0.1}{11} }^{2}$ R R $22$ $22$ ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.11.0.1}{11} }^{2}$ $22$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.11.0.1}{11} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.0.1$x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.14.0.1$x^{14} + 5 x^{7} + 6 x^{5} + 2 x^{4} + 3 x^{2} + 6 x + 3$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(83\) Copy content Toggle raw display 83.2.1.1$x^{2} + 166$$2$$1$$1$$C_2$$[\ ]_{2}$
83.4.0.1$x^{4} + 4 x^{2} + 42 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
83.6.4.1$x^{6} + 246 x^{5} + 20178 x^{4} + 552518 x^{3} + 60774 x^{2} + 1674264 x + 45729605$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
83.10.0.1$x^{10} + 7 x^{5} + 73 x^{3} + 53 x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(127\) Copy content Toggle raw display $\Q_{127}$$x + 124$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 124$$1$$1$$0$Trivial$[\ ]$
127.3.2.1$x^{3} + 127$$3$$1$$2$$C_3$$[\ ]_{3}$
127.3.2.1$x^{3} + 127$$3$$1$$2$$C_3$$[\ ]_{3}$
127.14.0.1$x^{14} - x + 29$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(997\) Copy content Toggle raw display $\Q_{997}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{997}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{997}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{997}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$