\\ Pari/GP code for working with number field 22.4.120805734981681461698275794063.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^22 - 3*y^21 + 2*y^20 + 6*y^19 - 15*y^18 + 11*y^17 + 10*y^16 - 31*y^15 + 28*y^14 + 2*y^13 - 32*y^12 + 35*y^11 - 11*y^10 - 16*y^9 + 25*y^8 - 14*y^7 - 4*y^6 + 10*y^5 - 8*y^4 + 2*y^3 + 2*y^2 - 2*y + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 3*x^21 + 2*x^20 + 6*x^19 - 15*x^18 + 11*x^17 + 10*x^16 - 31*x^15 + 28*x^14 + 2*x^13 - 32*x^12 + 35*x^11 - 11*x^10 - 16*x^9 + 25*x^8 - 14*x^7 - 4*x^6 + 10*x^5 - 8*x^4 + 2*x^3 + 2*x^2 - 2*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])