Normalized defining polynomial
\( x^{22} - 44 x^{20} + 836 x^{18} - 8976 x^{16} + 59840 x^{14} - 256256 x^{12} - 9 x^{11} + 704704 x^{10} + 198 x^{9} - 1208064 x^{8} - 1584 x^{7} + 1208064 x^{6} + 5544 x^{5} - 619520 x^{4} - 7920 x^{3} + 123904 x^{2} + 3168 x + 16 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(984311297528998947620977146874832596749227182758485402624=2^{10}\cdot 11^{22}\cdot 17^{11}\cdot 3217^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $389.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17, 3217$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{17} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{12} a^{18} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{19} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{24} a^{20} - \frac{3}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{24} a^{21} - \frac{3}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13905869122000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4840 |
| The 31 conjugacy class representatives for t22n20 |
| Character table for t22n20 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.11.10.1 | $x^{11} - 2$ | $11$ | $1$ | $10$ | $F_{11}$ | $[\ ]_{11}^{10}$ | |
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||
| 3217 | Data not computed | ||||||