Normalized defining polynomial
\( x^{22} - 154 x^{20} + 9977 x^{18} - 356510 x^{16} + 7743164 x^{14} - 106106616 x^{12} - 569132 x^{11} + 920181163 x^{10} + 25806220 x^{9} - 4917829378 x^{8} - 418434192 x^{7} + 15202800943 x^{6} + 2845252564 x^{5} - 23934195670 x^{4} - 7007773300 x^{3} + 14018600321 x^{2} + 2956714508 x - 2857488932 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9610975147402804808462869844433474471824562971475968=2^{43}\cdot 11^{22}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $230.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{3}{8} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{3}{8} a^{7} + \frac{3}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{11} + \frac{3}{8} a^{10} + \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{11} - \frac{3}{8} a^{9} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{541064} a^{17} - \frac{27291}{541064} a^{16} - \frac{14995}{541064} a^{15} + \frac{1327}{270532} a^{14} - \frac{24351}{541064} a^{13} + \frac{3907}{270532} a^{12} - \frac{18937}{135266} a^{11} + \frac{61201}{135266} a^{10} - \frac{124245}{541064} a^{9} + \frac{88649}{270532} a^{8} - \frac{65037}{135266} a^{7} - \frac{83265}{541064} a^{6} + \frac{187559}{541064} a^{5} - \frac{32177}{135266} a^{4} - \frac{101451}{541064} a^{3} - \frac{31591}{541064} a^{2} - \frac{31599}{135266} a + \frac{32933}{135266}$, $\frac{1}{541064} a^{18} + \frac{28553}{541064} a^{16} + \frac{2674}{67633} a^{15} - \frac{7245}{135266} a^{14} + \frac{6531}{541064} a^{13} - \frac{1545}{270532} a^{12} + \frac{73515}{541064} a^{11} - \frac{16827}{270532} a^{10} + \frac{93729}{270532} a^{9} - \frac{17617}{541064} a^{8} + \frac{194741}{541064} a^{7} - \frac{66921}{541064} a^{6} + \frac{213787}{541064} a^{5} + \frac{51275}{541064} a^{4} + \frac{96555}{541064} a^{3} + \frac{179639}{541064} a^{2} - \frac{7313}{67633} a + \frac{67199}{135266}$, $\frac{1}{541064} a^{19} - \frac{6111}{541064} a^{16} + \frac{6365}{541064} a^{15} - \frac{24171}{541064} a^{14} + \frac{23773}{541064} a^{13} + \frac{14007}{541064} a^{12} + \frac{7729}{135266} a^{11} + \frac{42349}{135266} a^{10} - \frac{35757}{270532} a^{9} - \frac{269}{541064} a^{8} + \frac{212331}{541064} a^{7} - \frac{3302}{67633} a^{6} - \frac{17489}{67633} a^{5} + \frac{54125}{541064} a^{4} + \frac{47163}{135266} a^{3} - \frac{264901}{541064} a^{2} + \frac{21593}{135266} a + \frac{33283}{135266}$, $\frac{1}{541064} a^{20} + \frac{7021}{270532} a^{16} - \frac{15901}{541064} a^{15} + \frac{10447}{541064} a^{14} - \frac{1177}{270532} a^{13} + \frac{8343}{135266} a^{12} - \frac{49279}{541064} a^{11} + \frac{4759}{135266} a^{10} + \frac{54227}{541064} a^{9} - \frac{70783}{541064} a^{8} - \frac{36203}{135266} a^{7} - \frac{101635}{541064} a^{6} + \frac{29589}{135266} a^{5} - \frac{22493}{67633} a^{4} - \frac{104985}{541064} a^{3} - \frac{212179}{541064} a^{2} - \frac{21812}{67633} a - \frac{22245}{135266}$, $\frac{1}{22671577065066080889069721300266763164905132309344152} a^{21} - \frac{19518858539883763799874310825526507107706396933}{22671577065066080889069721300266763164905132309344152} a^{20} - \frac{1517940335315800554177457599100388050618863809}{7557192355022026963023240433422254388301710769781384} a^{19} + \frac{3485428075014400236770263999874668628755948361}{3778596177511013481511620216711127194150855384890692} a^{18} + \frac{5059141484563596200329091662212107775383312609}{22671577065066080889069721300266763164905132309344152} a^{17} + \frac{125491773649292621080385517556257162591276297212615}{5667894266266520222267430325066690791226283077336038} a^{16} - \frac{23391881518265775313700540279978962679464177219219}{3778596177511013481511620216711127194150855384890692} a^{15} + \frac{346312678727906795864523423133038643075761754910351}{7557192355022026963023240433422254388301710769781384} a^{14} - \frac{507971460036539020200556960443730832884548335366411}{11335788532533040444534860650133381582452566154672076} a^{13} + \frac{544050542467850506167890002868511374561930098272973}{11335788532533040444534860650133381582452566154672076} a^{12} + \frac{332511547454789410056368530111450328127384332462897}{22671577065066080889069721300266763164905132309344152} a^{11} - \frac{485099898209704748053618392362598052437331186590961}{1889298088755506740755810108355563597075427692445346} a^{10} - \frac{8578533849396137166469142404176195044908466303588129}{22671577065066080889069721300266763164905132309344152} a^{9} - \frac{4094817110443261381122215016678133418087696579352463}{22671577065066080889069721300266763164905132309344152} a^{8} - \frac{251288930467980570008782006740258526856724458522315}{5667894266266520222267430325066690791226283077336038} a^{7} - \frac{1198747491959540256827604120907982529624826545696173}{3238796723580868698438531614323823309272161758477736} a^{6} + \frac{3851008315457163910699545036357790619594625008880683}{22671577065066080889069721300266763164905132309344152} a^{5} - \frac{1047166272221971296863150782289847040721559503768589}{3778596177511013481511620216711127194150855384890692} a^{4} - \frac{40898446210457497108336542224920037994160606499125}{22671577065066080889069721300266763164905132309344152} a^{3} - \frac{7727478833507793097310087330342090044400551012384649}{22671577065066080889069721300266763164905132309344152} a^{2} + \frac{312380902691942484046739808004787645540849509893797}{944649044377753370377905054177781798537713846222673} a + \frac{999782165253933911818810813905272542451534195574611}{5667894266266520222267430325066690791226283077336038}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30149249254500000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2420 |
| The 29 conjugacy class representatives for t22n15 |
| Character table for t22n15 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | R | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 41 | Data not computed | ||||||