Properties

Label 22.22.9444503769...1641.1
Degree $22$
Signature $[22, 0]$
Discriminant $23^{20}\cdot 41^{11}$
Root discriminant $110.75$
Ramified primes $23, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7810183279, -15736819750, 5872500477, 24406337029, -133094234, -16336349510, -984959307, 6132077765, 330778443, -1414727471, -37826626, 208664464, -856739, -19938598, 652512, 1223460, -70417, -46387, 3645, 987, -95, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 - 95*x^20 + 987*x^19 + 3645*x^18 - 46387*x^17 - 70417*x^16 + 1223460*x^15 + 652512*x^14 - 19938598*x^13 - 856739*x^12 + 208664464*x^11 - 37826626*x^10 - 1414727471*x^9 + 330778443*x^8 + 6132077765*x^7 - 984959307*x^6 - 16336349510*x^5 - 133094234*x^4 + 24406337029*x^3 + 5872500477*x^2 - 15736819750*x - 7810183279)
 
gp: K = bnfinit(x^22 - 9*x^21 - 95*x^20 + 987*x^19 + 3645*x^18 - 46387*x^17 - 70417*x^16 + 1223460*x^15 + 652512*x^14 - 19938598*x^13 - 856739*x^12 + 208664464*x^11 - 37826626*x^10 - 1414727471*x^9 + 330778443*x^8 + 6132077765*x^7 - 984959307*x^6 - 16336349510*x^5 - 133094234*x^4 + 24406337029*x^3 + 5872500477*x^2 - 15736819750*x - 7810183279, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} - 95 x^{20} + 987 x^{19} + 3645 x^{18} - 46387 x^{17} - 70417 x^{16} + 1223460 x^{15} + 652512 x^{14} - 19938598 x^{13} - 856739 x^{12} + 208664464 x^{11} - 37826626 x^{10} - 1414727471 x^{9} + 330778443 x^{8} + 6132077765 x^{7} - 984959307 x^{6} - 16336349510 x^{5} - 133094234 x^{4} + 24406337029 x^{3} + 5872500477 x^{2} - 15736819750 x - 7810183279 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(944450376932556277593597370211011550363631641=23^{20}\cdot 41^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $110.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(943=23\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{943}(1,·)$, $\chi_{943}(450,·)$, $\chi_{943}(901,·)$, $\chi_{943}(903,·)$, $\chi_{943}(657,·)$, $\chi_{943}(739,·)$, $\chi_{943}(532,·)$, $\chi_{943}(409,·)$, $\chi_{943}(860,·)$, $\chi_{943}(288,·)$, $\chi_{943}(737,·)$, $\chi_{943}(163,·)$, $\chi_{943}(165,·)$, $\chi_{943}(614,·)$, $\chi_{943}(81,·)$, $\chi_{943}(616,·)$, $\chi_{943}(491,·)$, $\chi_{943}(370,·)$, $\chi_{943}(821,·)$, $\chi_{943}(696,·)$, $\chi_{943}(698,·)$, $\chi_{943}(124,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{21} + \frac{1799649451245896190524641768663909314792997699720498648866582113618667283205648038261}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{20} - \frac{8944493867375418382861200803293050653511706811414295642795921232698781937417268480238}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{19} + \frac{11271082173884508032358167389817467835172669604472462976449495019920960700367528990478}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{18} + \frac{12540580121339229465091534442357907383341304981054582277686724421596222967372786421380}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{17} - \frac{29183967497094068774631381971731108803660468391401107058818447917200437822668419783124}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{16} + \frac{17253077343668263534196652522018344563113527465916736933433318035629711200585011822207}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{15} - \frac{44346949368000748029234872819301040584904832300350093803133991454724833793415377450545}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{14} + \frac{39264021175651455596993300732515370880831446482087469966093950613120186024056467561395}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{13} + \frac{14232830476953175810330324829063953735101209331798177716856723463584197313735144308877}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{12} + \frac{10341041241171863318278018919261709267049286622984084363729808848971904003294940809926}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{11} - \frac{14647939535584822423262241113240814002961686028035969006100977322610317750019080899790}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{10} - \frac{16161078743720364015252879535763473425287759028669230703764728226941401498822112822246}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{9} + \frac{34560706627228902327310436819041973796132117148833833452363021744726557302619994957733}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{8} + \frac{6187771092681418467541614713857182839462923880947937957857370819911227431616813391207}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{7} - \frac{14046891528701901188085546796894867020383098395629073633495689254757056714603341528727}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{6} + \frac{37574710143281464551361509724231278772293070792543120162394203647350687237333302511976}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{5} - \frac{12906597706232369527334923340825274841187690671761981353630949179744066784993055725178}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{4} + \frac{23726823463499895780356379523467428784529370841596123594990933331078845931322836880859}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{3} - \frac{38691859878415757893748194003364547435898165885381097101023270713282903074176361675966}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a^{2} + \frac{2956999975619328779998556273851405336111134911120990218457780848000441254563424809434}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333} a + \frac{29486207817613943741901290982345380756022217271903683472454171077075075668652850275921}{89967755418110535440536222329317879928703206293171840837767696181706939106895891374333}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1977369244418017.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ $22$ $22$ $22$ $22$ R $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
41Data not computed