Normalized defining polynomial
\( x^{22} - 67 x^{20} + 1742 x^{18} - 22713 x^{16} + 160264 x^{14} - 613452 x^{12} + 1211561 x^{10} - 1133506 x^{8} + 512550 x^{6} - 106195 x^{4} + 7839 x^{2} - 67 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(933750314983937236210361829997141120063111168=2^{22}\cdot 67^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(268=2^{2}\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{268}(1,·)$, $\chi_{268}(3,·)$, $\chi_{268}(129,·)$, $\chi_{268}(9,·)$, $\chi_{268}(267,·)$, $\chi_{268}(81,·)$, $\chi_{268}(75,·)$, $\chi_{268}(259,·)$, $\chi_{268}(139,·)$, $\chi_{268}(149,·)$, $\chi_{268}(89,·)$, $\chi_{268}(25,·)$, $\chi_{268}(27,·)$, $\chi_{268}(225,·)$, $\chi_{268}(243,·)$, $\chi_{268}(119,·)$, $\chi_{268}(193,·)$, $\chi_{268}(43,·)$, $\chi_{268}(241,·)$, $\chi_{268}(179,·)$, $\chi_{268}(265,·)$, $\chi_{268}(187,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{29} a^{16} - \frac{1}{29} a^{14} + \frac{13}{29} a^{12} - \frac{4}{29} a^{10} - \frac{11}{29} a^{8} - \frac{11}{29} a^{6} + \frac{5}{29} a^{4} + \frac{7}{29} a^{2} - \frac{5}{29}$, $\frac{1}{29} a^{17} - \frac{1}{29} a^{15} + \frac{13}{29} a^{13} - \frac{4}{29} a^{11} - \frac{11}{29} a^{9} - \frac{11}{29} a^{7} + \frac{5}{29} a^{5} + \frac{7}{29} a^{3} - \frac{5}{29} a$, $\frac{1}{104081} a^{18} + \frac{1722}{104081} a^{16} + \frac{13399}{104081} a^{14} + \frac{42492}{104081} a^{12} - \frac{18677}{104081} a^{10} + \frac{44343}{104081} a^{8} - \frac{21790}{104081} a^{6} - \frac{16753}{104081} a^{4} + \frac{50046}{104081} a^{2} - \frac{7629}{104081}$, $\frac{1}{104081} a^{19} + \frac{1722}{104081} a^{17} + \frac{13399}{104081} a^{15} + \frac{42492}{104081} a^{13} - \frac{18677}{104081} a^{11} + \frac{44343}{104081} a^{9} - \frac{21790}{104081} a^{7} - \frac{16753}{104081} a^{5} + \frac{50046}{104081} a^{3} - \frac{7629}{104081} a$, $\frac{1}{11769933343674148933} a^{20} - \frac{14430902126496}{11769933343674148933} a^{18} - \frac{178006461792639605}{11769933343674148933} a^{16} + \frac{2346707019078143843}{11769933343674148933} a^{14} - \frac{5754079320484931552}{11769933343674148933} a^{12} - \frac{2913900756043386233}{11769933343674148933} a^{10} + \frac{2749579763818108410}{11769933343674148933} a^{8} - \frac{3690627638673721902}{11769933343674148933} a^{6} + \frac{3036278358663837739}{11769933343674148933} a^{4} + \frac{4557385933435253828}{11769933343674148933} a^{2} - \frac{1757122307640656399}{11769933343674148933}$, $\frac{1}{11769933343674148933} a^{21} - \frac{14430902126496}{11769933343674148933} a^{19} - \frac{178006461792639605}{11769933343674148933} a^{17} + \frac{2346707019078143843}{11769933343674148933} a^{15} - \frac{5754079320484931552}{11769933343674148933} a^{13} - \frac{2913900756043386233}{11769933343674148933} a^{11} + \frac{2749579763818108410}{11769933343674148933} a^{9} - \frac{3690627638673721902}{11769933343674148933} a^{7} + \frac{3036278358663837739}{11769933343674148933} a^{5} + \frac{4557385933435253828}{11769933343674148933} a^{3} - \frac{1757122307640656399}{11769933343674148933} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6014326916364551.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{67}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 67 | Data not computed | ||||||