Properties

Label 22.22.8673813082...5217.1
Degree $22$
Signature $[22, 0]$
Discriminant $3^{11}\cdot 11^{11}\cdot 23^{20}$
Root discriminant $99.36$
Ramified primes $3, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-257391023, -908178246, -128681365, 2008563717, 759946006, -1936994870, -652601717, 1036117069, 247797313, -331663703, -48200954, 65804524, 4607977, -8223098, -103492, 644732, -19975, -30667, 1975, 807, -73, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 - 73*x^20 + 807*x^19 + 1975*x^18 - 30667*x^17 - 19975*x^16 + 644732*x^15 - 103492*x^14 - 8223098*x^13 + 4607977*x^12 + 65804524*x^11 - 48200954*x^10 - 331663703*x^9 + 247797313*x^8 + 1036117069*x^7 - 652601717*x^6 - 1936994870*x^5 + 759946006*x^4 + 2008563717*x^3 - 128681365*x^2 - 908178246*x - 257391023)
 
gp: K = bnfinit(x^22 - 9*x^21 - 73*x^20 + 807*x^19 + 1975*x^18 - 30667*x^17 - 19975*x^16 + 644732*x^15 - 103492*x^14 - 8223098*x^13 + 4607977*x^12 + 65804524*x^11 - 48200954*x^10 - 331663703*x^9 + 247797313*x^8 + 1036117069*x^7 - 652601717*x^6 - 1936994870*x^5 + 759946006*x^4 + 2008563717*x^3 - 128681365*x^2 - 908178246*x - 257391023, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} - 73 x^{20} + 807 x^{19} + 1975 x^{18} - 30667 x^{17} - 19975 x^{16} + 644732 x^{15} - 103492 x^{14} - 8223098 x^{13} + 4607977 x^{12} + 65804524 x^{11} - 48200954 x^{10} - 331663703 x^{9} + 247797313 x^{8} + 1036117069 x^{7} - 652601717 x^{6} - 1936994870 x^{5} + 759946006 x^{4} + 2008563717 x^{3} - 128681365 x^{2} - 908178246 x - 257391023 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(86738130821466057117717765143796460851305217=3^{11}\cdot 11^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $99.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(759=3\cdot 11\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{759}(1,·)$, $\chi_{759}(131,·)$, $\chi_{759}(133,·)$, $\chi_{759}(265,·)$, $\chi_{759}(395,·)$, $\chi_{759}(397,·)$, $\chi_{759}(461,·)$, $\chi_{759}(593,·)$, $\chi_{759}(725,·)$, $\chi_{759}(100,·)$, $\chi_{759}(331,·)$, $\chi_{759}(463,·)$, $\chi_{759}(197,·)$, $\chi_{759}(32,·)$, $\chi_{759}(496,·)$, $\chi_{759}(98,·)$, $\chi_{759}(164,·)$, $\chi_{759}(232,·)$, $\chi_{759}(430,·)$, $\chi_{759}(560,·)$, $\chi_{759}(692,·)$, $\chi_{759}(694,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{21} + \frac{30141826783869466372849131550512499504191045006325856186136645975063976971470454}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{20} + \frac{853027126686047709321778795877759669164378396779593472075052844033343103783164}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{19} - \frac{23234721316024505519704260406298970916435595676738180638644465101863312018623624}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{18} - \frac{32939756671501276864177154818392058059349992499801575869413544957052459387188619}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{17} - \frac{47543072305238780468463084596514957107736356870266504196730736720357340501940654}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{16} - \frac{28588488647506013710235322525247785219405268055425927236684294119626992708547791}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{15} - \frac{42828467958058082720423711566224208268060744366000869101676631321629763080504841}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{14} + \frac{36885579979858650657477803895715008769837223250051742794256818834200375751235061}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{13} + \frac{13976602647035945777259882064196447394361232153831941347037988603769524635508713}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{12} + \frac{7563545425831484073741858586601916839161192649045037036515637798937647331959061}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{11} + \frac{35773904544199070686109035841595206856134077122007889452446625850050423280249614}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{10} - \frac{3140069473050060810379085126291053395942132961260559510833248464417047036238164}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{9} + \frac{19710753285482635682838375997767013586362691386782493190767335082777137011007454}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{8} - \frac{13425187917370167833653752847206299380845963902925736841461763374523977841342064}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{7} + \frac{33263374928849193592403466546204125169147407912352022054383504202995336293666095}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{6} - \frac{19955335524508015359988043894015227549102502436857895188866553626463880664667431}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{5} + \frac{30789393129383691926112261257359076461751365476065336276618418802363648301021521}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{4} + \frac{42023890364600914891843342836817599344785701234832551814701308569168211047846745}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{3} + \frac{35175650668611543490973846463932207236315903328199372082755590701858618221697226}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a^{2} + \frac{30597627074782951741479820036739653790807671624927426339064645786971884040604229}{95147470122769387936108902109394982118164803410249222576103593713286442054705381} a + \frac{25033268028654547915887905098192465660218127175880814743732812080344241286482760}{95147470122769387936108902109394982118164803410249222576103593713286442054705381}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 498239383130000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{33}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ R $22$ $22$ R $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ $22$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
11Data not computed
23Data not computed