Properties

Label 22.22.8653466954...0889.1
Degree $22$
Signature $[22, 0]$
Discriminant $89^{21}$
Root discriminant $72.57$
Ramified prime $89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -39, 376, 419, -7518, -3224, 45984, 20339, -109384, -41490, 128582, 36419, -81976, -16237, 29502, 3987, -6079, -539, 703, 37, -42, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 - 42*x^20 + 37*x^19 + 703*x^18 - 539*x^17 - 6079*x^16 + 3987*x^15 + 29502*x^14 - 16237*x^13 - 81976*x^12 + 36419*x^11 + 128582*x^10 - 41490*x^9 - 109384*x^8 + 20339*x^7 + 45984*x^6 - 3224*x^5 - 7518*x^4 + 419*x^3 + 376*x^2 - 39*x + 1)
 
gp: K = bnfinit(x^22 - x^21 - 42*x^20 + 37*x^19 + 703*x^18 - 539*x^17 - 6079*x^16 + 3987*x^15 + 29502*x^14 - 16237*x^13 - 81976*x^12 + 36419*x^11 + 128582*x^10 - 41490*x^9 - 109384*x^8 + 20339*x^7 + 45984*x^6 - 3224*x^5 - 7518*x^4 + 419*x^3 + 376*x^2 - 39*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} - 42 x^{20} + 37 x^{19} + 703 x^{18} - 539 x^{17} - 6079 x^{16} + 3987 x^{15} + 29502 x^{14} - 16237 x^{13} - 81976 x^{12} + 36419 x^{11} + 128582 x^{10} - 41490 x^{9} - 109384 x^{8} + 20339 x^{7} + 45984 x^{6} - 3224 x^{5} - 7518 x^{4} + 419 x^{3} + 376 x^{2} - 39 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(86534669543385676516186776267386878120889=89^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $72.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(89\)
Dirichlet character group:    $\lbrace$$\chi_{89}(64,·)$, $\chi_{89}(1,·)$, $\chi_{89}(2,·)$, $\chi_{89}(67,·)$, $\chi_{89}(4,·)$, $\chi_{89}(8,·)$, $\chi_{89}(73,·)$, $\chi_{89}(11,·)$, $\chi_{89}(78,·)$, $\chi_{89}(16,·)$, $\chi_{89}(81,·)$, $\chi_{89}(85,·)$, $\chi_{89}(22,·)$, $\chi_{89}(87,·)$, $\chi_{89}(88,·)$, $\chi_{89}(25,·)$, $\chi_{89}(32,·)$, $\chi_{89}(39,·)$, $\chi_{89}(44,·)$, $\chi_{89}(45,·)$, $\chi_{89}(50,·)$, $\chi_{89}(57,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{233} a^{20} + \frac{84}{233} a^{19} + \frac{14}{233} a^{18} + \frac{88}{233} a^{17} + \frac{110}{233} a^{16} + \frac{73}{233} a^{15} + \frac{38}{233} a^{14} - \frac{111}{233} a^{13} - \frac{48}{233} a^{12} - \frac{97}{233} a^{11} + \frac{35}{233} a^{10} + \frac{48}{233} a^{9} + \frac{57}{233} a^{8} + \frac{84}{233} a^{7} + \frac{44}{233} a^{6} + \frac{106}{233} a^{5} + \frac{64}{233} a^{4} - \frac{59}{233} a^{3} + \frac{91}{233} a^{2} - \frac{47}{233} a - \frac{57}{233}$, $\frac{1}{954607074366869591183484326023} a^{21} + \frac{974357976834387703073140093}{954607074366869591183484326023} a^{20} + \frac{250914879844143521688030178984}{954607074366869591183484326023} a^{19} - \frac{445267276841925482438210739268}{954607074366869591183484326023} a^{18} + \frac{336144782368651006628589173780}{954607074366869591183484326023} a^{17} - \frac{292539787509977731856864311185}{954607074366869591183484326023} a^{16} + \frac{4355636153649338046378276929}{954607074366869591183484326023} a^{15} + \frac{350529344029086625854032265041}{954607074366869591183484326023} a^{14} + \frac{408221696336649892588566566770}{954607074366869591183484326023} a^{13} + \frac{389881362606937238550825286449}{954607074366869591183484326023} a^{12} - \frac{174773215136737706165068012532}{954607074366869591183484326023} a^{11} - \frac{402753855959321734343945356350}{954607074366869591183484326023} a^{10} - \frac{66253240909124749845778927081}{954607074366869591183484326023} a^{9} + \frac{274378119840618050008227059445}{954607074366869591183484326023} a^{8} - \frac{433315956799765023643542034437}{954607074366869591183484326023} a^{7} + \frac{335986110149943143769734998007}{954607074366869591183484326023} a^{6} - \frac{2917762136055709378332632816}{954607074366869591183484326023} a^{5} - \frac{10610830125780766385728879144}{954607074366869591183484326023} a^{4} + \frac{230249563679837404550757924981}{954607074366869591183484326023} a^{3} - \frac{58788500813808918633350187270}{954607074366869591183484326023} a^{2} - \frac{301733620272632258365507155630}{954607074366869591183484326023} a + \frac{383718066492168893133978688348}{954607074366869591183484326023}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15755205659500 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{89}) \), 11.11.31181719929966183601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ $22$ $22$ ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
89Data not computed