Normalized defining polynomial
\( x^{22} - x^{21} - 42 x^{20} + 37 x^{19} + 703 x^{18} - 539 x^{17} - 6079 x^{16} + 3987 x^{15} + 29502 x^{14} - 16237 x^{13} - 81976 x^{12} + 36419 x^{11} + 128582 x^{10} - 41490 x^{9} - 109384 x^{8} + 20339 x^{7} + 45984 x^{6} - 3224 x^{5} - 7518 x^{4} + 419 x^{3} + 376 x^{2} - 39 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86534669543385676516186776267386878120889=89^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{89}(64,·)$, $\chi_{89}(1,·)$, $\chi_{89}(2,·)$, $\chi_{89}(67,·)$, $\chi_{89}(4,·)$, $\chi_{89}(8,·)$, $\chi_{89}(73,·)$, $\chi_{89}(11,·)$, $\chi_{89}(78,·)$, $\chi_{89}(16,·)$, $\chi_{89}(81,·)$, $\chi_{89}(85,·)$, $\chi_{89}(22,·)$, $\chi_{89}(87,·)$, $\chi_{89}(88,·)$, $\chi_{89}(25,·)$, $\chi_{89}(32,·)$, $\chi_{89}(39,·)$, $\chi_{89}(44,·)$, $\chi_{89}(45,·)$, $\chi_{89}(50,·)$, $\chi_{89}(57,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{233} a^{20} + \frac{84}{233} a^{19} + \frac{14}{233} a^{18} + \frac{88}{233} a^{17} + \frac{110}{233} a^{16} + \frac{73}{233} a^{15} + \frac{38}{233} a^{14} - \frac{111}{233} a^{13} - \frac{48}{233} a^{12} - \frac{97}{233} a^{11} + \frac{35}{233} a^{10} + \frac{48}{233} a^{9} + \frac{57}{233} a^{8} + \frac{84}{233} a^{7} + \frac{44}{233} a^{6} + \frac{106}{233} a^{5} + \frac{64}{233} a^{4} - \frac{59}{233} a^{3} + \frac{91}{233} a^{2} - \frac{47}{233} a - \frac{57}{233}$, $\frac{1}{954607074366869591183484326023} a^{21} + \frac{974357976834387703073140093}{954607074366869591183484326023} a^{20} + \frac{250914879844143521688030178984}{954607074366869591183484326023} a^{19} - \frac{445267276841925482438210739268}{954607074366869591183484326023} a^{18} + \frac{336144782368651006628589173780}{954607074366869591183484326023} a^{17} - \frac{292539787509977731856864311185}{954607074366869591183484326023} a^{16} + \frac{4355636153649338046378276929}{954607074366869591183484326023} a^{15} + \frac{350529344029086625854032265041}{954607074366869591183484326023} a^{14} + \frac{408221696336649892588566566770}{954607074366869591183484326023} a^{13} + \frac{389881362606937238550825286449}{954607074366869591183484326023} a^{12} - \frac{174773215136737706165068012532}{954607074366869591183484326023} a^{11} - \frac{402753855959321734343945356350}{954607074366869591183484326023} a^{10} - \frac{66253240909124749845778927081}{954607074366869591183484326023} a^{9} + \frac{274378119840618050008227059445}{954607074366869591183484326023} a^{8} - \frac{433315956799765023643542034437}{954607074366869591183484326023} a^{7} + \frac{335986110149943143769734998007}{954607074366869591183484326023} a^{6} - \frac{2917762136055709378332632816}{954607074366869591183484326023} a^{5} - \frac{10610830125780766385728879144}{954607074366869591183484326023} a^{4} + \frac{230249563679837404550757924981}{954607074366869591183484326023} a^{3} - \frac{58788500813808918633350187270}{954607074366869591183484326023} a^{2} - \frac{301733620272632258365507155630}{954607074366869591183484326023} a + \frac{383718066492168893133978688348}{954607074366869591183484326023}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15755205659500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89 | Data not computed | ||||||