Normalized defining polynomial
\( x^{22} - x^{21} - 31 x^{20} + 26 x^{19} + 379 x^{18} - 254 x^{17} - 2365 x^{16} + 1195 x^{15} + 8247 x^{14} - 2967 x^{13} - 16780 x^{12} + 4100 x^{11} + 20269 x^{10} - 3174 x^{9} - 14356 x^{8} + 1331 x^{7} + 5656 x^{6} - 301 x^{5} - 1100 x^{4} + 50 x^{3} + 81 x^{2} - 6 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(83796671451884098775580820361328125=5^{11}\cdot 23^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(115=5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{115}(64,·)$, $\chi_{115}(1,·)$, $\chi_{115}(4,·)$, $\chi_{115}(6,·)$, $\chi_{115}(71,·)$, $\chi_{115}(9,·)$, $\chi_{115}(16,·)$, $\chi_{115}(81,·)$, $\chi_{115}(24,·)$, $\chi_{115}(26,·)$, $\chi_{115}(29,·)$, $\chi_{115}(94,·)$, $\chi_{115}(31,·)$, $\chi_{115}(96,·)$, $\chi_{115}(36,·)$, $\chi_{115}(101,·)$, $\chi_{115}(39,·)$, $\chi_{115}(104,·)$, $\chi_{115}(41,·)$, $\chi_{115}(49,·)$, $\chi_{115}(54,·)$, $\chi_{115}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{56434294023897120739} a^{21} - \frac{16715073269265397265}{56434294023897120739} a^{20} + \frac{25973587480747409457}{56434294023897120739} a^{19} + \frac{3741467039879829759}{56434294023897120739} a^{18} - \frac{135456302100991293}{56434294023897120739} a^{17} + \frac{22662899710884134446}{56434294023897120739} a^{16} + \frac{14095648608578273486}{56434294023897120739} a^{15} + \frac{14780106911863947683}{56434294023897120739} a^{14} + \frac{13411739415746507241}{56434294023897120739} a^{13} + \frac{10938396768848346865}{56434294023897120739} a^{12} - \frac{21408531734584798482}{56434294023897120739} a^{11} + \frac{20450647543062054973}{56434294023897120739} a^{10} - \frac{7631575739397224646}{56434294023897120739} a^{9} - \frac{7849150185992359754}{56434294023897120739} a^{8} + \frac{14408483517612357320}{56434294023897120739} a^{7} + \frac{1928511410022929178}{56434294023897120739} a^{6} - \frac{22908421253297592882}{56434294023897120739} a^{5} - \frac{27238553615507393480}{56434294023897120739} a^{4} - \frac{13225948143484377746}{56434294023897120739} a^{3} - \frac{7018683369595104660}{56434294023897120739} a^{2} - \frac{21790241648713404537}{56434294023897120739} a + \frac{10784499631451005690}{56434294023897120739}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17322043684.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||