Normalized defining polynomial
\( x^{22} - x^{21} - 45 x^{20} + 45 x^{19} + 875 x^{18} - 875 x^{17} - 9613 x^{16} + 9613 x^{15} + 65459 x^{14} - 65459 x^{13} - 284877 x^{12} + 284877 x^{11} + 786739 x^{10} - 786739 x^{9} - 1318221 x^{8} + 1318221 x^{7} + 1207731 x^{6} - 1207731 x^{5} - 476237 x^{4} + 476237 x^{3} + 41907 x^{2} - 41907 x - 5197 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(78048218870425324004237696277333187889=7^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(161=7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{161}(64,·)$, $\chi_{161}(1,·)$, $\chi_{161}(132,·)$, $\chi_{161}(71,·)$, $\chi_{161}(8,·)$, $\chi_{161}(76,·)$, $\chi_{161}(141,·)$, $\chi_{161}(78,·)$, $\chi_{161}(83,·)$, $\chi_{161}(20,·)$, $\chi_{161}(85,·)$, $\chi_{161}(153,·)$, $\chi_{161}(90,·)$, $\chi_{161}(29,·)$, $\chi_{161}(160,·)$, $\chi_{161}(97,·)$, $\chi_{161}(34,·)$, $\chi_{161}(36,·)$, $\chi_{161}(111,·)$, $\chi_{161}(50,·)$, $\chi_{161}(125,·)$, $\chi_{161}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{967} a^{12} - \frac{44}{967} a^{11} - \frac{24}{967} a^{10} + \frac{1}{967} a^{9} + \frac{216}{967} a^{8} - \frac{8}{967} a^{7} + \frac{71}{967} a^{6} + \frac{28}{967} a^{5} - \frac{254}{967} a^{4} - \frac{40}{967} a^{3} - \frac{185}{967} a^{2} + \frac{16}{967} a + \frac{128}{967}$, $\frac{1}{967} a^{13} - \frac{26}{967} a^{11} - \frac{88}{967} a^{10} + \frac{260}{967} a^{9} - \frac{174}{967} a^{8} - \frac{281}{967} a^{7} + \frac{251}{967} a^{6} + \frac{11}{967} a^{5} + \frac{388}{967} a^{4} - \frac{11}{967} a^{3} - \frac{388}{967} a^{2} - \frac{135}{967} a - \frac{170}{967}$, $\frac{1}{967} a^{14} - \frac{265}{967} a^{11} - \frac{364}{967} a^{10} - \frac{148}{967} a^{9} - \frac{467}{967} a^{8} + \frac{43}{967} a^{7} - \frac{77}{967} a^{6} + \frac{149}{967} a^{5} + \frac{154}{967} a^{4} - \frac{461}{967} a^{3} - \frac{110}{967} a^{2} + \frac{246}{967} a + \frac{427}{967}$, $\frac{1}{967} a^{15} - \frac{420}{967} a^{11} + \frac{261}{967} a^{10} - \frac{202}{967} a^{9} + \frac{230}{967} a^{8} - \frac{263}{967} a^{7} - \frac{376}{967} a^{6} - \frac{162}{967} a^{5} - \frac{81}{967} a^{4} - \frac{73}{967} a^{3} - \frac{429}{967} a^{2} - \frac{168}{967} a + \frac{75}{967}$, $\frac{1}{967} a^{16} + \frac{154}{967} a^{11} + \frac{355}{967} a^{10} - \frac{317}{967} a^{9} - \frac{441}{967} a^{8} + \frac{132}{967} a^{7} - \frac{319}{967} a^{6} + \frac{75}{967} a^{5} - \frac{383}{967} a^{4} + \frac{177}{967} a^{3} + \frac{459}{967} a^{2} + \frac{26}{967} a - \frac{392}{967}$, $\frac{1}{967} a^{17} + \frac{362}{967} a^{11} + \frac{478}{967} a^{10} + \frac{372}{967} a^{9} - \frac{254}{967} a^{8} - \frac{54}{967} a^{7} - \frac{222}{967} a^{6} + \frac{140}{967} a^{5} - \frac{354}{967} a^{4} - \frac{150}{967} a^{3} + \frac{473}{967} a^{2} + \frac{45}{967} a - \frac{372}{967}$, $\frac{1}{967} a^{18} - \frac{33}{967} a^{11} + \frac{357}{967} a^{10} + \frac{351}{967} a^{9} + \frac{81}{967} a^{8} - \frac{227}{967} a^{7} - \frac{420}{967} a^{6} + \frac{147}{967} a^{5} - \frac{67}{967} a^{4} + \frac{448}{967} a^{3} + \frac{292}{967} a^{2} - \frac{362}{967} a + \frac{80}{967}$, $\frac{1}{967} a^{19} - \frac{128}{967} a^{11} - \frac{441}{967} a^{10} + \frac{114}{967} a^{9} + \frac{132}{967} a^{8} + \frac{283}{967} a^{7} - \frac{411}{967} a^{6} - \frac{110}{967} a^{5} - \frac{198}{967} a^{4} - \frac{61}{967} a^{3} + \frac{302}{967} a^{2} - \frac{359}{967} a + \frac{356}{967}$, $\frac{1}{967} a^{20} - \frac{271}{967} a^{11} - \frac{57}{967} a^{10} + \frac{260}{967} a^{9} - \frac{112}{967} a^{8} - \frac{468}{967} a^{7} + \frac{275}{967} a^{6} - \frac{482}{967} a^{5} + \frac{305}{967} a^{4} + \frac{17}{967} a^{3} + \frac{136}{967} a^{2} + \frac{470}{967} a - \frac{55}{967}$, $\frac{1}{967} a^{21} - \frac{377}{967} a^{11} - \frac{442}{967} a^{10} + \frac{159}{967} a^{9} + \frac{48}{967} a^{8} + \frac{41}{967} a^{7} + \frac{386}{967} a^{6} + \frac{157}{967} a^{5} - \frac{160}{967} a^{4} - \frac{67}{967} a^{3} - \frac{348}{967} a^{2} + \frac{413}{967} a - \frac{124}{967}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 482091917601 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{161}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | $22$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 23 | Data not computed | ||||||