Properties

Label 22.22.7804821887...7889.1
Degree $22$
Signature $[22, 0]$
Discriminant $7^{11}\cdot 23^{21}$
Root discriminant $52.77$
Ramified primes $7, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5197, -41907, 41907, 476237, -476237, -1207731, 1207731, 1318221, -1318221, -786739, 786739, 284877, -284877, -65459, 65459, 9613, -9613, -875, 875, 45, -45, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 - 45*x^20 + 45*x^19 + 875*x^18 - 875*x^17 - 9613*x^16 + 9613*x^15 + 65459*x^14 - 65459*x^13 - 284877*x^12 + 284877*x^11 + 786739*x^10 - 786739*x^9 - 1318221*x^8 + 1318221*x^7 + 1207731*x^6 - 1207731*x^5 - 476237*x^4 + 476237*x^3 + 41907*x^2 - 41907*x - 5197)
 
gp: K = bnfinit(x^22 - x^21 - 45*x^20 + 45*x^19 + 875*x^18 - 875*x^17 - 9613*x^16 + 9613*x^15 + 65459*x^14 - 65459*x^13 - 284877*x^12 + 284877*x^11 + 786739*x^10 - 786739*x^9 - 1318221*x^8 + 1318221*x^7 + 1207731*x^6 - 1207731*x^5 - 476237*x^4 + 476237*x^3 + 41907*x^2 - 41907*x - 5197, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} - 45 x^{20} + 45 x^{19} + 875 x^{18} - 875 x^{17} - 9613 x^{16} + 9613 x^{15} + 65459 x^{14} - 65459 x^{13} - 284877 x^{12} + 284877 x^{11} + 786739 x^{10} - 786739 x^{9} - 1318221 x^{8} + 1318221 x^{7} + 1207731 x^{6} - 1207731 x^{5} - 476237 x^{4} + 476237 x^{3} + 41907 x^{2} - 41907 x - 5197 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(78048218870425324004237696277333187889=7^{11}\cdot 23^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(161=7\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{161}(64,·)$, $\chi_{161}(1,·)$, $\chi_{161}(132,·)$, $\chi_{161}(71,·)$, $\chi_{161}(8,·)$, $\chi_{161}(76,·)$, $\chi_{161}(141,·)$, $\chi_{161}(78,·)$, $\chi_{161}(83,·)$, $\chi_{161}(20,·)$, $\chi_{161}(85,·)$, $\chi_{161}(153,·)$, $\chi_{161}(90,·)$, $\chi_{161}(29,·)$, $\chi_{161}(160,·)$, $\chi_{161}(97,·)$, $\chi_{161}(34,·)$, $\chi_{161}(36,·)$, $\chi_{161}(111,·)$, $\chi_{161}(50,·)$, $\chi_{161}(125,·)$, $\chi_{161}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{967} a^{12} - \frac{44}{967} a^{11} - \frac{24}{967} a^{10} + \frac{1}{967} a^{9} + \frac{216}{967} a^{8} - \frac{8}{967} a^{7} + \frac{71}{967} a^{6} + \frac{28}{967} a^{5} - \frac{254}{967} a^{4} - \frac{40}{967} a^{3} - \frac{185}{967} a^{2} + \frac{16}{967} a + \frac{128}{967}$, $\frac{1}{967} a^{13} - \frac{26}{967} a^{11} - \frac{88}{967} a^{10} + \frac{260}{967} a^{9} - \frac{174}{967} a^{8} - \frac{281}{967} a^{7} + \frac{251}{967} a^{6} + \frac{11}{967} a^{5} + \frac{388}{967} a^{4} - \frac{11}{967} a^{3} - \frac{388}{967} a^{2} - \frac{135}{967} a - \frac{170}{967}$, $\frac{1}{967} a^{14} - \frac{265}{967} a^{11} - \frac{364}{967} a^{10} - \frac{148}{967} a^{9} - \frac{467}{967} a^{8} + \frac{43}{967} a^{7} - \frac{77}{967} a^{6} + \frac{149}{967} a^{5} + \frac{154}{967} a^{4} - \frac{461}{967} a^{3} - \frac{110}{967} a^{2} + \frac{246}{967} a + \frac{427}{967}$, $\frac{1}{967} a^{15} - \frac{420}{967} a^{11} + \frac{261}{967} a^{10} - \frac{202}{967} a^{9} + \frac{230}{967} a^{8} - \frac{263}{967} a^{7} - \frac{376}{967} a^{6} - \frac{162}{967} a^{5} - \frac{81}{967} a^{4} - \frac{73}{967} a^{3} - \frac{429}{967} a^{2} - \frac{168}{967} a + \frac{75}{967}$, $\frac{1}{967} a^{16} + \frac{154}{967} a^{11} + \frac{355}{967} a^{10} - \frac{317}{967} a^{9} - \frac{441}{967} a^{8} + \frac{132}{967} a^{7} - \frac{319}{967} a^{6} + \frac{75}{967} a^{5} - \frac{383}{967} a^{4} + \frac{177}{967} a^{3} + \frac{459}{967} a^{2} + \frac{26}{967} a - \frac{392}{967}$, $\frac{1}{967} a^{17} + \frac{362}{967} a^{11} + \frac{478}{967} a^{10} + \frac{372}{967} a^{9} - \frac{254}{967} a^{8} - \frac{54}{967} a^{7} - \frac{222}{967} a^{6} + \frac{140}{967} a^{5} - \frac{354}{967} a^{4} - \frac{150}{967} a^{3} + \frac{473}{967} a^{2} + \frac{45}{967} a - \frac{372}{967}$, $\frac{1}{967} a^{18} - \frac{33}{967} a^{11} + \frac{357}{967} a^{10} + \frac{351}{967} a^{9} + \frac{81}{967} a^{8} - \frac{227}{967} a^{7} - \frac{420}{967} a^{6} + \frac{147}{967} a^{5} - \frac{67}{967} a^{4} + \frac{448}{967} a^{3} + \frac{292}{967} a^{2} - \frac{362}{967} a + \frac{80}{967}$, $\frac{1}{967} a^{19} - \frac{128}{967} a^{11} - \frac{441}{967} a^{10} + \frac{114}{967} a^{9} + \frac{132}{967} a^{8} + \frac{283}{967} a^{7} - \frac{411}{967} a^{6} - \frac{110}{967} a^{5} - \frac{198}{967} a^{4} - \frac{61}{967} a^{3} + \frac{302}{967} a^{2} - \frac{359}{967} a + \frac{356}{967}$, $\frac{1}{967} a^{20} - \frac{271}{967} a^{11} - \frac{57}{967} a^{10} + \frac{260}{967} a^{9} - \frac{112}{967} a^{8} - \frac{468}{967} a^{7} + \frac{275}{967} a^{6} - \frac{482}{967} a^{5} + \frac{305}{967} a^{4} + \frac{17}{967} a^{3} + \frac{136}{967} a^{2} + \frac{470}{967} a - \frac{55}{967}$, $\frac{1}{967} a^{21} - \frac{377}{967} a^{11} - \frac{442}{967} a^{10} + \frac{159}{967} a^{9} + \frac{48}{967} a^{8} + \frac{41}{967} a^{7} + \frac{386}{967} a^{6} + \frac{157}{967} a^{5} - \frac{160}{967} a^{4} - \frac{67}{967} a^{3} - \frac{348}{967} a^{2} + \frac{413}{967} a - \frac{124}{967}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 482091917601 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{161}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ R $22$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
23Data not computed