Normalized defining polynomial
\( x^{22} - 9 x^{21} - 16 x^{20} + 315 x^{19} - 170 x^{18} - 4323 x^{17} + 5307 x^{16} + 30348 x^{15} - 44775 x^{14} - 120705 x^{13} + 180264 x^{12} + 285909 x^{11} - 379689 x^{10} - 406980 x^{9} + 414510 x^{8} + 326688 x^{7} - 216132 x^{6} - 122958 x^{5} + 46165 x^{4} + 13185 x^{3} - 3964 x^{2} - 9 x + 19 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(76397324237092623287515907764434814453125=3^{20}\cdot 5^{21}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{10} - \frac{2}{5} a^{7} + \frac{1}{10} a^{5} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{10} - \frac{2}{5} a^{9} - \frac{1}{2} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{11} - \frac{2}{5} a^{10} - \frac{1}{2} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{10} a$, $\frac{1}{10} a^{16} + \frac{3}{10} a^{10} - \frac{1}{2} a^{9} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a - \frac{3}{10}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{11} + \frac{3}{10} a^{10} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{50} a^{18} - \frac{1}{50} a^{17} + \frac{1}{25} a^{16} + \frac{1}{25} a^{15} - \frac{1}{50} a^{13} + \frac{1}{50} a^{12} + \frac{3}{50} a^{11} - \frac{17}{50} a^{10} + \frac{1}{5} a^{9} - \frac{4}{25} a^{8} - \frac{6}{25} a^{7} + \frac{12}{25} a^{6} - \frac{3}{25} a^{5} + \frac{1}{10} a^{4} - \frac{13}{50} a^{3} + \frac{3}{50} a^{2} + \frac{12}{25} a + \frac{7}{25}$, $\frac{1}{50} a^{19} + \frac{1}{50} a^{17} - \frac{1}{50} a^{16} + \frac{1}{25} a^{15} - \frac{1}{50} a^{14} - \frac{1}{50} a^{12} - \frac{2}{25} a^{11} + \frac{3}{50} a^{10} - \frac{23}{50} a^{9} - \frac{2}{5} a^{8} - \frac{9}{25} a^{7} - \frac{6}{25} a^{6} - \frac{8}{25} a^{5} + \frac{17}{50} a^{4} - \frac{1}{5} a^{3} - \frac{9}{25} a^{2} - \frac{1}{25} a + \frac{2}{25}$, $\frac{1}{473050} a^{20} + \frac{1127}{236525} a^{19} - \frac{1749}{473050} a^{18} - \frac{11256}{236525} a^{17} + \frac{1069}{236525} a^{16} + \frac{7301}{236525} a^{15} - \frac{12739}{473050} a^{14} - \frac{4361}{473050} a^{13} - \frac{19143}{473050} a^{12} + \frac{19187}{473050} a^{11} - \frac{81248}{236525} a^{10} + \frac{65289}{236525} a^{9} - \frac{122833}{473050} a^{8} + \frac{58861}{473050} a^{7} + \frac{20053}{236525} a^{6} - \frac{114697}{473050} a^{5} + \frac{70234}{236525} a^{4} - \frac{55824}{236525} a^{3} - \frac{142729}{473050} a^{2} + \frac{71618}{236525} a + \frac{7023}{236525}$, $\frac{1}{90069438793886561914250588050} a^{21} - \frac{56442580445124338694751}{90069438793886561914250588050} a^{20} + \frac{158835199904026076675381876}{45034719396943280957125294025} a^{19} + \frac{313339493365787069367471016}{45034719396943280957125294025} a^{18} - \frac{327786805972950637165882303}{18013887758777312382850117610} a^{17} - \frac{2000134801723720153534954151}{90069438793886561914250588050} a^{16} - \frac{550181657292479321826347829}{90069438793886561914250588050} a^{15} + \frac{1977056445334757225286217354}{45034719396943280957125294025} a^{14} - \frac{627646957437415692387832807}{90069438793886561914250588050} a^{13} - \frac{55428447740591434807106991}{3602777551755462476570023522} a^{12} - \frac{7718098406808582015498241103}{90069438793886561914250588050} a^{11} - \frac{14940988324511090755185114767}{90069438793886561914250588050} a^{10} - \frac{14846565908677925651308164548}{45034719396943280957125294025} a^{9} - \frac{14805564910851563564977413103}{45034719396943280957125294025} a^{8} + \frac{754748017371176690670783700}{1801388775877731238285011761} a^{7} + \frac{17709935313945382366636838367}{90069438793886561914250588050} a^{6} - \frac{35240477886091270283048339317}{90069438793886561914250588050} a^{5} - \frac{1021646355947228690082841231}{90069438793886561914250588050} a^{4} - \frac{22838917109594767974459522841}{90069438793886561914250588050} a^{3} - \frac{656083998734101944783203451}{18013887758777312382850117610} a^{2} - \frac{6888596119882282487697853771}{18013887758777312382850117610} a - \frac{427181737442356944791676037}{1801388775877731238285011761}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73548357254400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{11}:C_5$ (as 22T5):
| A solvable group of order 110 |
| The 14 conjugacy class representatives for $C_2\times C_{11}:C_5$ |
| Character table for $C_2\times C_{11}:C_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |