Properties

Label 22.22.7198079267...0000.1
Degree $22$
Signature $[22, 0]$
Discriminant $2^{33}\cdot 5^{11}\cdot 23^{20}$
Root discriminant $109.39$
Ramified primes $2, 5, 23$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8251382159, -2750460712, 18354424206, 5354124650, -16723460175, -4172120122, 8216704351, 1712218138, -2421562269, -411532688, 451520904, 61006720, -54729020, -5704484, 4347432, 335630, -223655, -12008, 7154, 238, -129, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 129*x^20 + 238*x^19 + 7154*x^18 - 12008*x^17 - 223655*x^16 + 335630*x^15 + 4347432*x^14 - 5704484*x^13 - 54729020*x^12 + 61006720*x^11 + 451520904*x^10 - 411532688*x^9 - 2421562269*x^8 + 1712218138*x^7 + 8216704351*x^6 - 4172120122*x^5 - 16723460175*x^4 + 5354124650*x^3 + 18354424206*x^2 - 2750460712*x - 8251382159)
 
gp: K = bnfinit(x^22 - 2*x^21 - 129*x^20 + 238*x^19 + 7154*x^18 - 12008*x^17 - 223655*x^16 + 335630*x^15 + 4347432*x^14 - 5704484*x^13 - 54729020*x^12 + 61006720*x^11 + 451520904*x^10 - 411532688*x^9 - 2421562269*x^8 + 1712218138*x^7 + 8216704351*x^6 - 4172120122*x^5 - 16723460175*x^4 + 5354124650*x^3 + 18354424206*x^2 - 2750460712*x - 8251382159, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 129 x^{20} + 238 x^{19} + 7154 x^{18} - 12008 x^{17} - 223655 x^{16} + 335630 x^{15} + 4347432 x^{14} - 5704484 x^{13} - 54729020 x^{12} + 61006720 x^{11} + 451520904 x^{10} - 411532688 x^{9} - 2421562269 x^{8} + 1712218138 x^{7} + 8216704351 x^{6} - 4172120122 x^{5} - 16723460175 x^{4} + 5354124650 x^{3} + 18354424206 x^{2} - 2750460712 x - 8251382159 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(719807926798998083647106533713510400000000000=2^{33}\cdot 5^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $109.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(920=2^{3}\cdot 5\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{920}(1,·)$, $\chi_{920}(841,·)$, $\chi_{920}(761,·)$, $\chi_{920}(909,·)$, $\chi_{920}(269,·)$, $\chi_{920}(81,·)$, $\chi_{920}(469,·)$, $\chi_{920}(121,·)$, $\chi_{920}(601,·)$, $\chi_{920}(29,·)$, $\chi_{920}(869,·)$, $\chi_{920}(721,·)$, $\chi_{920}(41,·)$, $\chi_{920}(749,·)$, $\chi_{920}(669,·)$, $\chi_{920}(561,·)$, $\chi_{920}(629,·)$, $\chi_{920}(349,·)$, $\chi_{920}(361,·)$, $\chi_{920}(441,·)$, $\chi_{920}(509,·)$, $\chi_{920}(829,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{21} - \frac{833188369923228737641957738305272299633548352777180041220137136096767548733471051187}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{20} - \frac{578301048064703998788250181533002554938055911583018640341931147527804548544275143284}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{19} - \frac{5640429922256404538270143525204296473769637197515416876699671553597105142831078739593}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{18} + \frac{77711923999206618999229355777030522620257890054696179859890935069174525792010047099}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{17} - \frac{5165885672836109819427529623617482018364122384297158456686813106767019922614639348384}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{16} + \frac{9353730568445525426479300855695251126074842434501236345067741144705713668559136944130}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{15} + \frac{5354376799239761322755286438773198490063560521374681901735611807632255390936927509448}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{14} + \frac{238802914259018137394393362872007192700705678255630659506117360533543675904698725760}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{13} + \frac{4200582833704331404480420580507826413516545273908668213663057273702636829734727230948}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{12} - \frac{5940765303480554059714057536794924539875482374993653645992609256039965716095379452470}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{11} - \frac{4660199603611431626441678011906319766794071820546808241985442843831500323117172868407}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{10} + \frac{7420032117863351035643219673221140960894399165187548423800153046770553486933477502131}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{9} - \frac{3301044070061201620182854590949652933622754381286155852481331147621862464415260640852}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{8} - \frac{1966798763146694778397891075592716182562163820903133534162866747698089372108845415544}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{7} - \frac{6110254405325885700473922147634790363270765303427708254124023627349305885936505435861}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{6} + \frac{3661834918345453971689200681564641048734036788173430394072342994399688809879867865025}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{5} - \frac{9471413053522446600037093824533187852028889761659246841776770422986059916670667940110}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{4} + \frac{1550224209100394494591056037506872074749390860386236175679368363618864873708998276577}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{3} - \frac{4498219265434771919747047785986760097250990824547341608237430691331179287243085856085}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a^{2} - \frac{2094846191268953114575721557729942785848920246447117413888685177374704913241337844024}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431} a + \frac{7101713892333188832430060368332383092179429321774714319497164923790657085403760788752}{19300221896409597797582452444000554654012075326466861072138124648665489889693046751431}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 642628850080310.2 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{10}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ R $22$ $22$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ $22$ R $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
23Data not computed