Properties

Label 22.22.6992272712...5581.1
Degree $22$
Signature $[22, 0]$
Discriminant $3^{11}\cdot 23^{21}$
Root discriminant $34.55$
Ramified primes $3, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -24, 24, 482, -482, -2807, 2807, 7060, -7060, -9385, 9385, 7359, -7359, -3589, 3589, 1103, -1103, -208, 208, 22, -22, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 - 22*x^20 + 22*x^19 + 208*x^18 - 208*x^17 - 1103*x^16 + 1103*x^15 + 3589*x^14 - 3589*x^13 - 7359*x^12 + 7359*x^11 + 9385*x^10 - 9385*x^9 - 7060*x^8 + 7060*x^7 + 2807*x^6 - 2807*x^5 - 482*x^4 + 482*x^3 + 24*x^2 - 24*x + 1)
 
gp: K = bnfinit(x^22 - x^21 - 22*x^20 + 22*x^19 + 208*x^18 - 208*x^17 - 1103*x^16 + 1103*x^15 + 3589*x^14 - 3589*x^13 - 7359*x^12 + 7359*x^11 + 9385*x^10 - 9385*x^9 - 7060*x^8 + 7060*x^7 + 2807*x^6 - 2807*x^5 - 482*x^4 + 482*x^3 + 24*x^2 - 24*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} - 22 x^{20} + 22 x^{19} + 208 x^{18} - 208 x^{17} - 1103 x^{16} + 1103 x^{15} + 3589 x^{14} - 3589 x^{13} - 7359 x^{12} + 7359 x^{11} + 9385 x^{10} - 9385 x^{9} - 7060 x^{8} + 7060 x^{7} + 2807 x^{6} - 2807 x^{5} - 482 x^{4} + 482 x^{3} + 24 x^{2} - 24 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6992272712228843238468603052945581=3^{11}\cdot 23^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(69=3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{69}(64,·)$, $\chi_{69}(1,·)$, $\chi_{69}(4,·)$, $\chi_{69}(5,·)$, $\chi_{69}(68,·)$, $\chi_{69}(65,·)$, $\chi_{69}(11,·)$, $\chi_{69}(13,·)$, $\chi_{69}(14,·)$, $\chi_{69}(16,·)$, $\chi_{69}(17,·)$, $\chi_{69}(20,·)$, $\chi_{69}(25,·)$, $\chi_{69}(31,·)$, $\chi_{69}(38,·)$, $\chi_{69}(44,·)$, $\chi_{69}(49,·)$, $\chi_{69}(52,·)$, $\chi_{69}(53,·)$, $\chi_{69}(55,·)$, $\chi_{69}(56,·)$, $\chi_{69}(58,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5503144493.95 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{69}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ $22$ R $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ $22$ $22$ $22$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
23Data not computed