Normalized defining polynomial
\( x^{22} - 44 x^{20} + 836 x^{18} - 8976 x^{16} + 59840 x^{14} - 256256 x^{12} - 124 x^{11} + 704704 x^{10} + 2728 x^{9} - 1208064 x^{8} - 21824 x^{7} + 1208064 x^{6} + 76384 x^{5} - 619520 x^{4} - 109120 x^{3} + 123904 x^{2} + 43648 x + 3592 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(691317220063227578535949337667555335077888=2^{32}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{10} + \frac{1}{6} a^{8} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{15} + \frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{16} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{5388} a^{17} - \frac{5}{898} a^{16} - \frac{17}{2694} a^{15} + \frac{31}{2694} a^{14} - \frac{211}{2694} a^{13} + \frac{23}{1347} a^{12} + \frac{14}{1347} a^{11} + \frac{161}{898} a^{10} - \frac{51}{898} a^{9} + \frac{91}{449} a^{8} + \frac{4}{1347} a^{7} - \frac{151}{1347} a^{6} - \frac{78}{449} a^{5} - \frac{352}{1347} a^{4} + \frac{47}{1347} a^{3} - \frac{182}{1347} a^{2} - \frac{388}{1347} a + \frac{1}{3}$, $\frac{1}{5388} a^{18} - \frac{3}{449} a^{16} - \frac{5}{449} a^{15} - \frac{179}{2694} a^{14} + \frac{1}{1347} a^{13} + \frac{61}{2694} a^{12} - \frac{4}{449} a^{11} - \frac{80}{449} a^{10} + \frac{223}{1347} a^{9} - \frac{75}{898} a^{8} - \frac{31}{1347} a^{7} + \frac{175}{1347} a^{6} - \frac{188}{1347} a^{5} - \frac{635}{1347} a^{4} - \frac{119}{1347} a^{3} - \frac{460}{1347} a^{2} + \frac{34}{1347} a - \frac{1}{3}$, $\frac{1}{5388} a^{19} + \frac{69}{1796} a^{16} + \frac{107}{2694} a^{15} + \frac{110}{1347} a^{14} + \frac{49}{1347} a^{13} - \frac{82}{1347} a^{12} + \frac{79}{2694} a^{11} - \frac{21}{449} a^{10} + \frac{52}{1347} a^{9} + \frac{287}{2694} a^{8} - \frac{193}{449} a^{7} + \frac{662}{1347} a^{6} + \frac{370}{1347} a^{5} + \frac{230}{1347} a^{4} + \frac{334}{1347} a^{3} - \frac{232}{1347} a^{2} - \frac{49}{1347} a + \frac{1}{3}$, $\frac{1}{5388} a^{20} + \frac{23}{898} a^{16} - \frac{155}{5388} a^{15} - \frac{11}{898} a^{14} - \frac{20}{1347} a^{13} - \frac{7}{1347} a^{12} - \frac{85}{2694} a^{11} - \frac{199}{2694} a^{10} + \frac{88}{449} a^{9} - \frac{583}{2694} a^{8} - \frac{166}{1347} a^{7} - \frac{84}{449} a^{6} + \frac{176}{1347} a^{5} + \frac{11}{1347} a^{4} + \frac{122}{449} a^{3} - \frac{180}{449} a^{2} + \frac{394}{1347} a - \frac{1}{3}$, $\frac{1}{5388} a^{21} - \frac{14}{1347} a^{16} + \frac{34}{1347} a^{15} + \frac{86}{1347} a^{14} - \frac{27}{898} a^{13} - \frac{49}{898} a^{12} - \frac{11}{1347} a^{11} - \frac{286}{1347} a^{10} + \frac{163}{1347} a^{9} + \frac{325}{1347} a^{8} - \frac{355}{1347} a^{7} + \frac{120}{449} a^{6} - \frac{158}{449} a^{5} + \frac{150}{449} a^{4} + \frac{158}{1347} a^{3} + \frac{122}{449} a^{2} + \frac{562}{1347} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 398119325026000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_{11}$ (as 22T6):
| A solvable group of order 220 |
| The 22 conjugacy class representatives for $C_2\times F_{11}$ |
| Character table for $C_2\times F_{11}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{7}) \), 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||