Normalized defining polynomial
\( x^{22} - x^{21} - 44 x^{20} + 27 x^{19} + 766 x^{18} - 243 x^{17} - 6909 x^{16} + 676 x^{15} + 35042 x^{14} + 1614 x^{13} - 100878 x^{12} - 11106 x^{11} + 158022 x^{10} + 13148 x^{9} - 122742 x^{8} + 4085 x^{7} + 40785 x^{6} - 4986 x^{5} - 4409 x^{4} + 486 x^{3} + 133 x^{2} - 5 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(657763557836310291639991612795361328125=5^{11}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{17} - \frac{2}{5} a^{16} + \frac{1}{5} a^{15} + \frac{2}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{19} - \frac{1}{5} a^{17} + \frac{2}{5} a^{16} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{275} a^{20} + \frac{1}{25} a^{19} - \frac{3}{55} a^{18} + \frac{89}{275} a^{17} - \frac{31}{275} a^{16} + \frac{63}{275} a^{15} + \frac{2}{55} a^{14} - \frac{28}{275} a^{13} - \frac{94}{275} a^{12} - \frac{19}{55} a^{11} + \frac{119}{275} a^{10} - \frac{58}{275} a^{9} + \frac{89}{275} a^{8} - \frac{2}{11} a^{7} - \frac{14}{275} a^{6} - \frac{118}{275} a^{5} - \frac{109}{275} a^{4} - \frac{1}{11} a^{3} - \frac{27}{275} a^{2} - \frac{68}{275} a + \frac{63}{275}$, $\frac{1}{23063418380320308821533423325} a^{21} - \frac{14350953681378145495158624}{23063418380320308821533423325} a^{20} + \frac{377932964412613520357117382}{4612683676064061764306684665} a^{19} - \frac{98478749752540363113741661}{2096674398210937165593947575} a^{18} - \frac{334791559601604563145598136}{23063418380320308821533423325} a^{17} - \frac{2406009566902017973422848737}{23063418380320308821533423325} a^{16} - \frac{1933699014815123866085586813}{4612683676064061764306684665} a^{15} + \frac{3462355564993981822778956907}{23063418380320308821533423325} a^{14} + \frac{5510763053749300710823572396}{23063418380320308821533423325} a^{13} - \frac{390520135113253112368939279}{4612683676064061764306684665} a^{12} + \frac{391002356955820888813877539}{23063418380320308821533423325} a^{11} + \frac{1848968327736383008461256722}{23063418380320308821533423325} a^{10} - \frac{4876702728321583671972071686}{23063418380320308821533423325} a^{9} - \frac{234438890901946725045224174}{922536735212812352861336933} a^{8} - \frac{1166199197129699975261891684}{23063418380320308821533423325} a^{7} - \frac{6857352385489047092674760523}{23063418380320308821533423325} a^{6} - \frac{10004634971992546682453300524}{23063418380320308821533423325} a^{5} + \frac{123605721560365451900335208}{419334879642187433118789515} a^{4} - \frac{1616761819959036682957080762}{23063418380320308821533423325} a^{3} + \frac{7009404270377498298548731717}{23063418380320308821533423325} a^{2} + \frac{10464843206615052504632077983}{23063418380320308821533423325} a - \frac{139961370102238925237533144}{4612683676064061764306684665}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3460009379450 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 44 |
| The 14 conjugacy class representatives for $D_{22}$ |
| Character table for $D_{22}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | $22$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | $22$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1297 | Data not computed | ||||||