Normalized defining polynomial
\( x^{22} - 6 x^{21} - 78 x^{20} + 510 x^{19} + 2025 x^{18} - 15807 x^{17} - 18933 x^{16} + 225726 x^{15} + 15870 x^{14} - 1647660 x^{13} + 763635 x^{12} + 6354345 x^{11} - 4837830 x^{10} - 12475935 x^{9} + 12236985 x^{8} + 10413186 x^{7} - 13357071 x^{6} - 1127478 x^{5} + 4770660 x^{4} - 952095 x^{3} - 312471 x^{2} + 60561 x + 9498 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61010903135742168957410203940677642822265625=3^{21}\cdot 5^{20}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{15} + \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{2}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{3}{10} a^{2} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{18} - \frac{1}{10} a^{16} - \frac{1}{10} a^{12} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} + \frac{1}{10} a^{7} + \frac{3}{10} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5}$, $\frac{1}{10} a^{19} - \frac{1}{10} a^{15} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} + \frac{2}{5} a^{11} + \frac{1}{10} a^{9} - \frac{2}{5} a^{8} + \frac{1}{10} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{3}{10} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{10} a^{20} - \frac{1}{10} a^{16} - \frac{1}{10} a^{14} - \frac{1}{10} a^{13} + \frac{2}{5} a^{11} + \frac{3}{10} a^{10} - \frac{2}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{9021857208133845727970799812058790283332927079114207686630} a^{21} + \frac{114552106452221955019279185671030150970969895628473440407}{9021857208133845727970799812058790283332927079114207686630} a^{20} - \frac{14983803712384045251066409186230131588871487993082382828}{902185720813384572797079981205879028333292707911420768663} a^{19} + \frac{410901589841775403733699418048822675447504905387673264837}{9021857208133845727970799812058790283332927079114207686630} a^{18} + \frac{441075116151736471079879515939748036883466744567324442}{644418372009560409140771415147056448809494791365300549045} a^{17} - \frac{384080080228867882458112947016071542142048073881446297203}{4510928604066922863985399906029395141666463539557103843315} a^{16} + \frac{165877137745675237470543807924656951798170567202469223509}{4510928604066922863985399906029395141666463539557103843315} a^{15} - \frac{70779624581743393573619386996348583044279299830280856284}{4510928604066922863985399906029395141666463539557103843315} a^{14} + \frac{327991431718035867557354349673253653782492887729149750893}{9021857208133845727970799812058790283332927079114207686630} a^{13} - \frac{704093763436668395976036291928209648659014407155314048823}{9021857208133845727970799812058790283332927079114207686630} a^{12} - \frac{651881062623183997526756700498907071169632973963838048013}{9021857208133845727970799812058790283332927079114207686630} a^{11} - \frac{2095808768027089175940390012775363907612169058626685290427}{9021857208133845727970799812058790283332927079114207686630} a^{10} + \frac{521680203728061798962269973870095650075694943311139345623}{9021857208133845727970799812058790283332927079114207686630} a^{9} - \frac{2112914014880184059010461396085783712748228311763951956273}{4510928604066922863985399906029395141666463539557103843315} a^{8} + \frac{3914978881208521792872742590273501180780074765443244540721}{9021857208133845727970799812058790283332927079114207686630} a^{7} + \frac{403916582783874771170798648849968801260659992372794906948}{902185720813384572797079981205879028333292707911420768663} a^{6} - \frac{1002683609593922053964843745929463493382732955253067273282}{4510928604066922863985399906029395141666463539557103843315} a^{5} + \frac{4360265260810548620325591433151221548511848428246247387119}{9021857208133845727970799812058790283332927079114207686630} a^{4} + \frac{38935436510360165551697968252045597206726645557411753019}{902185720813384572797079981205879028333292707911420768663} a^{3} - \frac{736740119687113886963589834061035862083575385824467601757}{1804371441626769145594159962411758056666585415822841537326} a^{2} + \frac{704159167610040466161605429945548919438036343037039437093}{1804371441626769145594159962411758056666585415822841537326} a - \frac{675700242292066707198389027877461680256322852049309942851}{4510928604066922863985399906029395141666463539557103843315}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6302138028050000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{11}:C_5$ (as 22T5):
| A solvable group of order 110 |
| The 14 conjugacy class representatives for $C_2\times C_{11}:C_5$ |
| Character table for $C_2\times C_{11}:C_5$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |