Properties

Label 22.22.6011307751...1421.1
Degree $22$
Signature $[22, 0]$
Discriminant $3^{11}\cdot 7^{11}\cdot 23^{20}$
Root discriminant $79.26$
Ramified primes $3, 7, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![33811, 176355, -3171418, -2534661, 19032841, 189445, -35394797, 9739465, 27735943, -11165111, -10720346, 5193994, 2189761, -1254848, -231298, 170660, 9563, -13162, 295, 537, -40, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 - 40*x^20 + 537*x^19 + 295*x^18 - 13162*x^17 + 9563*x^16 + 170660*x^15 - 231298*x^14 - 1254848*x^13 + 2189761*x^12 + 5193994*x^11 - 10720346*x^10 - 11165111*x^9 + 27735943*x^8 + 9739465*x^7 - 35394797*x^6 + 189445*x^5 + 19032841*x^4 - 2534661*x^3 - 3171418*x^2 + 176355*x + 33811)
 
gp: K = bnfinit(x^22 - 9*x^21 - 40*x^20 + 537*x^19 + 295*x^18 - 13162*x^17 + 9563*x^16 + 170660*x^15 - 231298*x^14 - 1254848*x^13 + 2189761*x^12 + 5193994*x^11 - 10720346*x^10 - 11165111*x^9 + 27735943*x^8 + 9739465*x^7 - 35394797*x^6 + 189445*x^5 + 19032841*x^4 - 2534661*x^3 - 3171418*x^2 + 176355*x + 33811, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} - 40 x^{20} + 537 x^{19} + 295 x^{18} - 13162 x^{17} + 9563 x^{16} + 170660 x^{15} - 231298 x^{14} - 1254848 x^{13} + 2189761 x^{12} + 5193994 x^{11} - 10720346 x^{10} - 11165111 x^{9} + 27735943 x^{8} + 9739465 x^{7} - 35394797 x^{6} + 189445 x^{5} + 19032841 x^{4} - 2534661 x^{3} - 3171418 x^{2} + 176355 x + 33811 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(601130775140836298755595442714814879781421=3^{11}\cdot 7^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $79.26$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(483=3\cdot 7\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{483}(64,·)$, $\chi_{483}(1,·)$, $\chi_{483}(461,·)$, $\chi_{483}(335,·)$, $\chi_{483}(400,·)$, $\chi_{483}(209,·)$, $\chi_{483}(146,·)$, $\chi_{483}(211,·)$, $\chi_{483}(85,·)$, $\chi_{483}(463,·)$, $\chi_{483}(358,·)$, $\chi_{483}(167,·)$, $\chi_{483}(104,·)$, $\chi_{483}(41,·)$, $\chi_{483}(232,·)$, $\chi_{483}(190,·)$, $\chi_{483}(169,·)$, $\chi_{483}(440,·)$, $\chi_{483}(377,·)$, $\chi_{483}(188,·)$, $\chi_{483}(62,·)$, $\chi_{483}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{13019} a^{20} - \frac{3305}{13019} a^{19} + \frac{2395}{13019} a^{18} - \frac{2337}{13019} a^{17} + \frac{1543}{13019} a^{16} - \frac{1335}{13019} a^{15} - \frac{3866}{13019} a^{14} - \frac{4483}{13019} a^{13} + \frac{3400}{13019} a^{12} - \frac{2445}{13019} a^{11} + \frac{3670}{13019} a^{10} + \frac{1556}{13019} a^{9} + \frac{4628}{13019} a^{8} - \frac{2956}{13019} a^{7} + \frac{3735}{13019} a^{6} + \frac{344}{13019} a^{5} + \frac{2301}{13019} a^{4} + \frac{1053}{13019} a^{3} + \frac{557}{13019} a^{2} + \frac{3615}{13019} a + \frac{4948}{13019}$, $\frac{1}{181750129770760123313809691093406224897406317373526549600840147} a^{21} - \frac{6646583075183165177247966945359191097216182749032077964638}{181750129770760123313809691093406224897406317373526549600840147} a^{20} + \frac{81131286436405733062908355798949418384802188023674226871020106}{181750129770760123313809691093406224897406317373526549600840147} a^{19} - \frac{53693647868586322048504241293165321389656552907966040601156157}{181750129770760123313809691093406224897406317373526549600840147} a^{18} - \frac{12238984684616774171029207781932638182369103659736905652372648}{181750129770760123313809691093406224897406317373526549600840147} a^{17} - \frac{34878611231721957831586626008987150238886609021419313981225595}{181750129770760123313809691093406224897406317373526549600840147} a^{16} - \frac{74394634960738979991680481152309911876281995844898567162171205}{181750129770760123313809691093406224897406317373526549600840147} a^{15} - \frac{35522536708830155452970985653554646884389145869672790417508827}{181750129770760123313809691093406224897406317373526549600840147} a^{14} - \frac{84231202358107163181433229312883182978546678196350117455570111}{181750129770760123313809691093406224897406317373526549600840147} a^{13} - \frac{13786520336371966680958761768479392415950108617820527130576188}{181750129770760123313809691093406224897406317373526549600840147} a^{12} - \frac{29568208910156100128089842859573068062278194678314933878397706}{181750129770760123313809691093406224897406317373526549600840147} a^{11} - \frac{7633500183870065341778369441837989182349015104305213169318732}{181750129770760123313809691093406224897406317373526549600840147} a^{10} - \frac{67392790315799848654119444543397765298458259683950136250044311}{181750129770760123313809691093406224897406317373526549600840147} a^{9} - \frac{73645745397048248141532063044322764210359827403688710148539744}{181750129770760123313809691093406224897406317373526549600840147} a^{8} + \frac{87307533668004385603172397533256493084511136367952816354470958}{181750129770760123313809691093406224897406317373526549600840147} a^{7} + \frac{81741479608815464380063831952188739544750708805991279998691785}{181750129770760123313809691093406224897406317373526549600840147} a^{6} + \frac{33040340528071411432963346419218526058299056450131864869999762}{181750129770760123313809691093406224897406317373526549600840147} a^{5} - \frac{59731532737373379351272306522915600173758821357234991542475685}{181750129770760123313809691093406224897406317373526549600840147} a^{4} + \frac{70773697461484654687722759150445832459976283592859368720198835}{181750129770760123313809691093406224897406317373526549600840147} a^{3} + \frac{31012941898802304917288135168963864371460190496082341104245870}{181750129770760123313809691093406224897406317373526549600840147} a^{2} + \frac{47171105621782718526199458728891943236368234524247719239414206}{181750129770760123313809691093406224897406317373526549600840147} a + \frac{64397231864856574283667891993889054393015516659078971181141166}{181750129770760123313809691093406224897406317373526549600840147}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 60706240430800 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ R $22$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ $22$ R $22$ $22$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed
23Data not computed