Normalized defining polynomial
\( x^{22} - 9 x^{21} - 29 x^{20} + 447 x^{19} - 45 x^{18} - 8947 x^{17} + 11069 x^{16} + 91788 x^{15} - 171900 x^{14} - 503122 x^{13} + 1217089 x^{12} + 1345876 x^{11} - 4447882 x^{10} - 974567 x^{9} + 8093877 x^{8} - 2261923 x^{7} - 6210705 x^{6} + 3693202 x^{5} + 1151278 x^{4} - 1207355 x^{3} + 143967 x^{2} + 43730 x - 6439 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58815914699238651208660872676277748369233=17^{11}\cdot 23^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(391=17\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{391}(256,·)$, $\chi_{391}(1,·)$, $\chi_{391}(324,·)$, $\chi_{391}(271,·)$, $\chi_{391}(16,·)$, $\chi_{391}(18,·)$, $\chi_{391}(154,·)$, $\chi_{391}(220,·)$, $\chi_{391}(288,·)$, $\chi_{391}(35,·)$, $\chi_{391}(101,·)$, $\chi_{391}(358,·)$, $\chi_{391}(169,·)$, $\chi_{391}(239,·)$, $\chi_{391}(305,·)$, $\chi_{391}(50,·)$, $\chi_{391}(307,·)$, $\chi_{391}(52,·)$, $\chi_{391}(118,·)$, $\chi_{391}(186,·)$, $\chi_{391}(188,·)$, $\chi_{391}(254,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} - \frac{15}{47} a^{19} + \frac{11}{47} a^{18} + \frac{3}{47} a^{17} - \frac{2}{47} a^{16} - \frac{14}{47} a^{15} + \frac{20}{47} a^{14} + \frac{13}{47} a^{13} - \frac{18}{47} a^{12} - \frac{12}{47} a^{11} + \frac{9}{47} a^{10} + \frac{13}{47} a^{9} - \frac{1}{47} a^{8} - \frac{8}{47} a^{7} + \frac{11}{47} a^{6} + \frac{4}{47} a^{5} + \frac{6}{47} a^{4} - \frac{12}{47} a^{3} + \frac{20}{47} a^{2} - \frac{9}{47} a$, $\frac{1}{1096882583607897978241161423944468782359578936014115295323} a^{21} + \frac{1816345314998901452225616817923887197357250498468443452}{1096882583607897978241161423944468782359578936014115295323} a^{20} - \frac{86040047911695148436607269350434594441733558247322686153}{1096882583607897978241161423944468782359578936014115295323} a^{19} - \frac{209694481869847852956926610439648579879969103948922074227}{1096882583607897978241161423944468782359578936014115295323} a^{18} + \frac{411122704658749410441992170475544619977745391318093721905}{1096882583607897978241161423944468782359578936014115295323} a^{17} - \frac{230820325581086565888118504689690443362265086565851410856}{1096882583607897978241161423944468782359578936014115295323} a^{16} + \frac{247518495405641945175400904929655069095443446017158958688}{1096882583607897978241161423944468782359578936014115295323} a^{15} - \frac{209833726433122126804504617693884585032244654715812154893}{1096882583607897978241161423944468782359578936014115295323} a^{14} - \frac{503665192936623323248042410341175398322943257946793079310}{1096882583607897978241161423944468782359578936014115295323} a^{13} - \frac{382430920148906940244422813899507147648058250476006942315}{1096882583607897978241161423944468782359578936014115295323} a^{12} - \frac{295148758811230687882130882730856000785453438284342011527}{1096882583607897978241161423944468782359578936014115295323} a^{11} + \frac{397994956994386334141902249927772429242960298444016963781}{1096882583607897978241161423944468782359578936014115295323} a^{10} - \frac{252378659989973395428910879624463610411577093266212371931}{1096882583607897978241161423944468782359578936014115295323} a^{9} + \frac{101464932554470992451461478130522121800050380896621338650}{1096882583607897978241161423944468782359578936014115295323} a^{8} + \frac{321731883347663629004733652212452227640328874848658035070}{1096882583607897978241161423944468782359578936014115295323} a^{7} + \frac{287300286444461748433027325022547881605742776122191176154}{1096882583607897978241161423944468782359578936014115295323} a^{6} + \frac{238134263520402587171442320892828298857247489401924433015}{1096882583607897978241161423944468782359578936014115295323} a^{5} + \frac{209788124351642606219133796840475204411586411541095546449}{1096882583607897978241161423944468782359578936014115295323} a^{4} + \frac{452481572463537102030837150342157555436191371962340251392}{1096882583607897978241161423944468782359578936014115295323} a^{3} + \frac{174970686443127132279290265332071292177361970554201591639}{1096882583607897978241161423944468782359578936014115295323} a^{2} - \frac{421971385200719108651958470640576329929870343428723423933}{1096882583607897978241161423944468782359578936014115295323} a + \frac{40326583495504690638108662647349356971951675296474041}{170349834385447736953123376913258080813725568568739757}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22589470687200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 23 | Data not computed | ||||||