Normalized defining polynomial
\( x^{22} - 3 x^{21} - 74 x^{20} + 243 x^{19} + 2085 x^{18} - 7414 x^{17} - 29089 x^{16} + 114096 x^{15} + 212871 x^{14} - 975861 x^{13} - 758660 x^{12} + 4759643 x^{11} + 754889 x^{10} - 13086344 x^{9} + 2499505 x^{8} + 19735158 x^{7} - 7618260 x^{6} - 15249644 x^{5} + 7359840 x^{4} + 5211574 x^{3} - 2533933 x^{2} - 639053 x + 247031 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48070600443250243342242248871561405585986328125=5^{11}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} + \frac{1}{3} a^{15} + \frac{4}{9} a^{14} + \frac{2}{9} a^{13} - \frac{4}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{1}{3} a^{7} - \frac{2}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{19} - \frac{1}{9} a^{17} + \frac{1}{9} a^{15} + \frac{4}{9} a^{14} - \frac{1}{3} a^{13} + \frac{4}{9} a^{12} - \frac{4}{9} a^{11} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{97815141} a^{20} + \frac{1477160}{97815141} a^{19} + \frac{604730}{32605047} a^{18} + \frac{5165282}{97815141} a^{17} - \frac{9608375}{97815141} a^{16} + \frac{1392474}{3622783} a^{15} - \frac{12809527}{32605047} a^{14} + \frac{13240325}{32605047} a^{13} + \frac{5506342}{32605047} a^{12} + \frac{4829029}{32605047} a^{11} + \frac{22842157}{97815141} a^{10} + \frac{20308351}{97815141} a^{9} + \frac{38776022}{97815141} a^{8} - \frac{4640933}{10868349} a^{7} - \frac{15705967}{32605047} a^{6} + \frac{11317754}{32605047} a^{5} - \frac{421387}{32605047} a^{4} - \frac{8815256}{97815141} a^{3} - \frac{453070}{97815141} a^{2} + \frac{4998548}{32605047} a + \frac{16266484}{97815141}$, $\frac{1}{564699346274368916136023871038691170541437760418551} a^{21} + \frac{700991272988451792458609603620238115996692}{564699346274368916136023871038691170541437760418551} a^{20} + \frac{1523736643599754507398163006841962129140974192578}{188233115424789638712007957012897056847145920139517} a^{19} + \frac{2514810001507458186434552855000980050268716335885}{564699346274368916136023871038691170541437760418551} a^{18} - \frac{2209893060373356754734120050089129202931650782781}{564699346274368916136023871038691170541437760418551} a^{17} - \frac{20972019439780518994235241009244386166364077753592}{188233115424789638712007957012897056847145920139517} a^{16} + \frac{16703859299119379737507507070717347368696440265107}{188233115424789638712007957012897056847145920139517} a^{15} + \frac{58907237906518504154837207682091797878346900315899}{188233115424789638712007957012897056847145920139517} a^{14} - \frac{23041481560175787875599610950547507522108853615950}{188233115424789638712007957012897056847145920139517} a^{13} + \frac{900873541297633079117724039569476389280389942964}{188233115424789638712007957012897056847145920139517} a^{12} - \frac{203296599726915464452563830243757844868645499227684}{564699346274368916136023871038691170541437760418551} a^{11} + \frac{217024113778303121602232477572883020455225433740067}{564699346274368916136023871038691170541437760418551} a^{10} + \frac{278746679806176152779544157101178971881100718290753}{564699346274368916136023871038691170541437760418551} a^{9} + \frac{35371380150499342622272335809998962248511331258253}{188233115424789638712007957012897056847145920139517} a^{8} - \frac{76164044583898616688058495151078252017034868520489}{188233115424789638712007957012897056847145920139517} a^{7} - \frac{80832347319168814935479885889813770300526496206097}{188233115424789638712007957012897056847145920139517} a^{6} + \frac{40603552508487701726232544328956436352215814298334}{188233115424789638712007957012897056847145920139517} a^{5} - \frac{242574773907820598278527247040945443168646426130398}{564699346274368916136023871038691170541437760418551} a^{4} + \frac{170203843270696183817100234370262661496033222185233}{564699346274368916136023871038691170541437760418551} a^{3} - \frac{51239997358322189325282968383911920712099234616136}{188233115424789638712007957012897056847145920139517} a^{2} + \frac{234493634402764065928271779517130248129379864482638}{564699346274368916136023871038691170541437760418551} a - \frac{48523383152337779092272968709072397906573046962364}{188233115424789638712007957012897056847145920139517}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23316714717000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 16 conjugacy class representatives for t22n13 |
| Character table for t22n13 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 74843 | Data not computed | ||||||