Normalized defining polynomial
\( x^{22} - 11 x^{21} + 4 x^{20} + 345 x^{19} - 924 x^{18} - 3703 x^{17} + 16135 x^{16} + 13322 x^{15} - 121744 x^{14} + 31850 x^{13} + 471182 x^{12} - 395648 x^{11} - 946985 x^{10} + 1246157 x^{9} + 844613 x^{8} - 1817353 x^{7} - 7200 x^{6} + 1206965 x^{5} - 429617 x^{4} - 256700 x^{3} + 164785 x^{2} - 10224 x - 5249 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48070600443250243342242248871561405585986328125=5^{11}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{4}{9} a^{15} + \frac{1}{9} a^{14} + \frac{2}{9} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{4}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{9} a^{7} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{4}{9} a^{13} - \frac{1}{3} a^{12} - \frac{2}{9} a^{11} + \frac{2}{9} a^{10} + \frac{1}{3} a^{9} + \frac{4}{9} a^{8} - \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{27} a^{20} + \frac{1}{27} a^{19} - \frac{4}{27} a^{17} - \frac{1}{9} a^{15} - \frac{11}{27} a^{14} + \frac{8}{27} a^{13} - \frac{8}{27} a^{12} - \frac{2}{27} a^{10} + \frac{4}{27} a^{9} - \frac{2}{9} a^{8} - \frac{2}{27} a^{7} + \frac{8}{27} a^{6} - \frac{8}{27} a^{5} + \frac{1}{27} a^{4} - \frac{2}{27} a^{3} + \frac{1}{9} a^{2} - \frac{2}{9} a + \frac{10}{27}$, $\frac{1}{273250913026288698270417336634050597} a^{21} + \frac{1403824621319633967171075470320904}{91083637675429566090139112211350199} a^{20} + \frac{7975329450427784685247418182522625}{273250913026288698270417336634050597} a^{19} + \frac{8206357942984471306813794647774045}{273250913026288698270417336634050597} a^{18} - \frac{24825163628494820682632873308134431}{273250913026288698270417336634050597} a^{17} + \frac{390529812208246263365527451666372}{91083637675429566090139112211350199} a^{16} - \frac{112886946685960116736552054725746585}{273250913026288698270417336634050597} a^{15} + \frac{37245927248566509015668178911806963}{273250913026288698270417336634050597} a^{14} - \frac{2440704003661189728675218613870511}{273250913026288698270417336634050597} a^{13} - \frac{48903108068477369068317541837460965}{273250913026288698270417336634050597} a^{12} + \frac{36818859008466882846602966224109899}{273250913026288698270417336634050597} a^{11} - \frac{42886490758966701899026630408938370}{91083637675429566090139112211350199} a^{10} - \frac{56289261045241947399293861054538349}{273250913026288698270417336634050597} a^{9} + \frac{108117290935389963420550337761246354}{273250913026288698270417336634050597} a^{8} - \frac{48776652287756371334047379347157795}{273250913026288698270417336634050597} a^{7} - \frac{49635518571276525122417943351178369}{273250913026288698270417336634050597} a^{6} - \frac{4312355679922189872816198297596360}{91083637675429566090139112211350199} a^{5} - \frac{9394292189961123051149633681605118}{91083637675429566090139112211350199} a^{4} + \frac{52925490598501651830881799069976484}{273250913026288698270417336634050597} a^{3} + \frac{40326522534285580297161857810809955}{91083637675429566090139112211350199} a^{2} + \frac{112599905193015235165869145692903154}{273250913026288698270417336634050597} a + \frac{118115284736194600783904886605587730}{273250913026288698270417336634050597}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23316714717000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 16 conjugacy class representatives for t22n13 |
| Character table for t22n13 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.11.31376518243389673201.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 74843 | Data not computed | ||||||