Normalized defining polynomial
\( x^{22} - x^{21} - 114 x^{20} + 114 x^{19} + 5636 x^{18} - 5636 x^{17} - 158239 x^{16} + 158239 x^{15} + 2774261 x^{14} - 2774261 x^{13} - 31438239 x^{12} + 31438239 x^{11} + 230186761 x^{10} - 230186761 x^{9} - 1054578864 x^{8} + 1054578864 x^{7} + 2799718011 x^{6} - 2799718011 x^{5} - 3624110114 x^{4} + 3624110114 x^{3} + 1317296136 x^{2} - 1317296136 x + 194249261 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4598055053342647107748042243736831875581437=19^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(437=19\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{437}(1,·)$, $\chi_{437}(132,·)$, $\chi_{437}(113,·)$, $\chi_{437}(77,·)$, $\chi_{437}(398,·)$, $\chi_{437}(400,·)$, $\chi_{437}(248,·)$, $\chi_{437}(210,·)$, $\chi_{437}(341,·)$, $\chi_{437}(324,·)$, $\chi_{437}(96,·)$, $\chi_{437}(227,·)$, $\chi_{437}(37,·)$, $\chi_{437}(39,·)$, $\chi_{437}(360,·)$, $\chi_{437}(381,·)$, $\chi_{437}(305,·)$, $\chi_{437}(436,·)$, $\chi_{437}(56,·)$, $\chi_{437}(58,·)$, $\chi_{437}(379,·)$, $\chi_{437}(189,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{22885229} a^{12} - \frac{5895364}{22885229} a^{11} - \frac{60}{22885229} a^{10} + \frac{3851814}{22885229} a^{9} + \frac{1350}{22885229} a^{8} - \frac{8380593}{22885229} a^{7} - \frac{14000}{22885229} a^{6} + \frac{10395809}{22885229} a^{5} + \frac{65625}{22885229} a^{4} - \frac{4434705}{22885229} a^{3} - \frac{112500}{22885229} a^{2} + \frac{4434705}{22885229} a + \frac{31250}{22885229}$, $\frac{1}{22885229} a^{13} - \frac{65}{22885229} a^{11} - \frac{6591591}{22885229} a^{10} + \frac{1625}{22885229} a^{9} + \frac{9186344}{22885229} a^{8} - \frac{19500}{22885229} a^{7} - \frac{564417}{22885229} a^{6} + \frac{113750}{22885229} a^{5} + \frac{4031550}{22885229} a^{4} - \frac{284375}{22885229} a^{3} - \frac{10078875}{22885229} a^{2} + \frac{203125}{22885229} a + \frac{4031550}{22885229}$, $\frac{1}{22885229} a^{14} - \frac{741358}{22885229} a^{11} - \frac{2275}{22885229} a^{10} + \frac{7816735}{22885229} a^{9} + \frac{68250}{22885229} a^{8} + \frac{3942534}{22885229} a^{7} - \frac{796250}{22885229} a^{6} - \frac{6797735}{22885229} a^{5} + \frac{3981250}{22885229} a^{4} - \frac{826723}{22885229} a^{3} - \frac{7109375}{22885229} a^{2} - \frac{5220602}{22885229} a + \frac{2031250}{22885229}$, $\frac{1}{22885229} a^{15} - \frac{2625}{22885229} a^{11} + \frac{9105713}{22885229} a^{10} + \frac{87500}{22885229} a^{9} - \frac{2174242}{22885229} a^{8} - \frac{1181250}{22885229} a^{7} + \frac{4084231}{22885229} a^{6} + \frac{7350000}{22885229} a^{5} - \frac{3204827}{22885229} a^{4} + \frac{3744604}{22885229} a^{3} + \frac{8664103}{22885229} a^{2} - \frac{8822729}{22885229} a + \frac{7585752}{22885229}$, $\frac{1}{22885229} a^{16} + \frac{4190017}{22885229} a^{11} - \frac{70000}{22885229} a^{10} - \frac{6433710}{22885229} a^{9} + \frac{2362500}{22885229} a^{8} - \frac{2267325}{22885229} a^{7} - \frac{6514771}{22885229} a^{6} + \frac{6600830}{22885229} a^{5} - \frac{7071603}{22885229} a^{4} - \frac{6740190}{22885229} a^{3} - \frac{6627252}{22885229} a^{2} + \frac{104816}{22885229} a - \frac{9509666}{22885229}$, $\frac{1}{22885229} a^{17} - \frac{85000}{22885229} a^{11} - \frac{6770209}{22885229} a^{10} + \frac{3187500}{22885229} a^{9} - \frac{6138712}{22885229} a^{8} - \frac{129542}{22885229} a^{7} - \frac{10888326}{22885229} a^{6} - \frac{7977}{22885229} a^{5} - \frac{10579380}{22885229} a^{4} + \frac{4108015}{22885229} a^{3} + \frac{9955603}{22885229} a^{2} + \frac{2640296}{22885229} a + \frac{11249088}{22885229}$, $\frac{1}{22885229} a^{18} + \frac{5149204}{22885229} a^{11} - \frac{1912500}{22885229} a^{10} + \frac{1965214}{22885229} a^{9} + \frac{194313}{22885229} a^{8} + \frac{10114986}{22885229} a^{7} + \frac{23931}{22885229} a^{6} - \frac{11276528}{22885229} a^{5} - \frac{1762861}{22885229} a^{4} + \frac{2637462}{22885229} a^{3} + \frac{6166018}{22885229} a^{2} - \frac{4318000}{22885229} a + \frac{1563436}{22885229}$, $\frac{1}{22885229} a^{19} - \frac{2422500}{22885229} a^{11} - \frac{9475752}{22885229} a^{10} + \frac{5359084}{22885229} a^{9} - \frac{7086027}{22885229} a^{8} + \frac{11154656}{22885229} a^{7} - \frac{10891878}{22885229} a^{6} + \frac{9548133}{22885229} a^{5} + \frac{9416376}{22885229} a^{4} + \frac{5001432}{22885229} a^{3} + \frac{10215552}{22885229} a^{2} + \frac{2728022}{22885229} a - \frac{6579901}{22885229}$, $\frac{1}{22885229} a^{20} - \frac{1608302}{22885229} a^{11} - \frac{2679542}{22885229} a^{10} - \frac{4976426}{22885229} a^{9} + \frac{8941909}{22885229} a^{8} - \frac{7313440}{22885229} a^{7} + \frac{10457511}{22885229} a^{6} - \frac{10452342}{22885229} a^{5} - \frac{2121931}{22885229} a^{4} - \frac{3827020}{22885229} a^{3} - \frac{11215046}{22885229} a^{2} + \frac{7462671}{22885229} a - \frac{1212532}{22885229}$, $\frac{1}{22885229} a^{21} + \frac{5065062}{22885229} a^{11} - \frac{9933630}{22885229} a^{10} - \frac{5077189}{22885229} a^{9} - \frac{10202495}{22885229} a^{8} - \frac{6668506}{22885229} a^{7} - \frac{7615006}{22885229} a^{6} - \frac{6744578}{22885229} a^{5} - \frac{5684418}{22885229} a^{4} + \frac{8563726}{22885229} a^{3} + \frac{4108145}{22885229} a^{2} + \frac{1893925}{22885229} a + \frac{3474616}{22885229}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205240201072000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{437}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | $22$ | $22$ | $22$ | $22$ | $22$ | R | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 23 | Data not computed | ||||||