Properties

Label 22.22.4299288794...3609.1
Degree $22$
Signature $[22, 0]$
Discriminant $19^{11}\cdot 211^{11}$
Root discriminant $63.32$
Ramified primes $19, 211$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $D_{11}$ (as 22T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2957, -757690, -940712, 5702075, 6295986, -13423268, -12265214, 15714269, 10902904, -10389210, -5095548, 4053245, 1314121, -954992, -182767, 136774, 11850, -11577, -69, 529, -29, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 10*x^21 - 29*x^20 + 529*x^19 - 69*x^18 - 11577*x^17 + 11850*x^16 + 136774*x^15 - 182767*x^14 - 954992*x^13 + 1314121*x^12 + 4053245*x^11 - 5095548*x^10 - 10389210*x^9 + 10902904*x^8 + 15714269*x^7 - 12265214*x^6 - 13423268*x^5 + 6295986*x^4 + 5702075*x^3 - 940712*x^2 - 757690*x - 2957)
 
gp: K = bnfinit(x^22 - 10*x^21 - 29*x^20 + 529*x^19 - 69*x^18 - 11577*x^17 + 11850*x^16 + 136774*x^15 - 182767*x^14 - 954992*x^13 + 1314121*x^12 + 4053245*x^11 - 5095548*x^10 - 10389210*x^9 + 10902904*x^8 + 15714269*x^7 - 12265214*x^6 - 13423268*x^5 + 6295986*x^4 + 5702075*x^3 - 940712*x^2 - 757690*x - 2957, 1)
 

Normalized defining polynomial

\( x^{22} - 10 x^{21} - 29 x^{20} + 529 x^{19} - 69 x^{18} - 11577 x^{17} + 11850 x^{16} + 136774 x^{15} - 182767 x^{14} - 954992 x^{13} + 1314121 x^{12} + 4053245 x^{11} - 5095548 x^{10} - 10389210 x^{9} + 10902904 x^{8} + 15714269 x^{7} - 12265214 x^{6} - 13423268 x^{5} + 6295986 x^{4} + 5702075 x^{3} - 940712 x^{2} - 757690 x - 2957 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4299288794103243236127943577240214703609=19^{11}\cdot 211^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $63.32$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 211$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{8}{19} a^{15} + \frac{3}{19} a^{14} + \frac{6}{19} a^{13} - \frac{3}{19} a^{12} - \frac{5}{19} a^{11} - \frac{3}{19} a^{10} + \frac{6}{19} a^{9} + \frac{4}{19} a^{8} - \frac{5}{19} a^{7} + \frac{5}{19} a^{6} + \frac{5}{19} a^{5} - \frac{1}{19} a^{4} + \frac{7}{19} a^{3} + \frac{3}{19} a^{2} - \frac{5}{19} a + \frac{9}{19}$, $\frac{1}{247} a^{17} - \frac{5}{247} a^{16} - \frac{59}{247} a^{15} - \frac{42}{247} a^{14} + \frac{34}{247} a^{13} + \frac{81}{247} a^{12} + \frac{1}{247} a^{11} - \frac{98}{247} a^{10} - \frac{16}{247} a^{9} - \frac{31}{247} a^{8} - \frac{29}{247} a^{7} + \frac{20}{247} a^{6} - \frac{81}{247} a^{5} - \frac{53}{247} a^{4} - \frac{90}{247} a^{3} - \frac{15}{247} a^{2} + \frac{51}{247} a + \frac{103}{247}$, $\frac{1}{1729} a^{18} + \frac{20}{1729} a^{16} + \frac{807}{1729} a^{15} + \frac{136}{1729} a^{14} - \frac{607}{1729} a^{13} - \frac{647}{1729} a^{12} - \frac{860}{1729} a^{11} - \frac{571}{1729} a^{10} + \frac{27}{91} a^{9} - \frac{509}{1729} a^{8} + \frac{96}{1729} a^{7} + \frac{786}{1729} a^{6} + \frac{309}{1729} a^{5} - \frac{212}{1729} a^{4} + \frac{757}{1729} a^{3} - \frac{100}{247} a^{2} + \frac{332}{1729} a + \frac{463}{1729}$, $\frac{1}{1729} a^{19} - \frac{1}{1729} a^{17} + \frac{2}{1729} a^{16} + \frac{10}{1729} a^{15} - \frac{726}{1729} a^{14} + \frac{5}{91} a^{13} + \frac{13}{133} a^{12} + \frac{500}{1729} a^{11} + \frac{6}{91} a^{10} - \frac{446}{1729} a^{9} + \frac{565}{1729} a^{8} + \frac{758}{1729} a^{7} + \frac{526}{1729} a^{6} + \frac{397}{1729} a^{5} - \frac{678}{1729} a^{4} + \frac{1}{247} a^{3} - \frac{354}{1729} a^{2} + \frac{484}{1729} a + \frac{3}{247}$, $\frac{1}{12103} a^{20} + \frac{2}{12103} a^{19} - \frac{3}{12103} a^{18} + \frac{1}{1729} a^{17} + \frac{303}{12103} a^{16} + \frac{3000}{12103} a^{15} + \frac{4356}{12103} a^{14} + \frac{3995}{12103} a^{13} - \frac{1851}{12103} a^{12} + \frac{2750}{12103} a^{11} - \frac{863}{1729} a^{10} - \frac{2739}{12103} a^{9} + \frac{5874}{12103} a^{8} + \frac{3285}{12103} a^{7} + \frac{1837}{12103} a^{6} + \frac{751}{12103} a^{5} + \frac{69}{12103} a^{4} + \frac{64}{12103} a^{3} - \frac{97}{247} a^{2} - \frac{2867}{12103} a - \frac{2074}{12103}$, $\frac{1}{46633477757166732178466141473973809159219538227} a^{21} - \frac{222108992245185768539233796530930667319546}{6661925393880961739780877353424829879888505461} a^{20} - \frac{1729419589430360337418037337068395656404637}{6661925393880961739780877353424829879888505461} a^{19} + \frac{383657478673866036106982278871146604728052}{3587190596705133244497395497997985319939964479} a^{18} + \frac{34283204770408040253223568168287342323089680}{46633477757166732178466141473973809159219538227} a^{17} - \frac{5396863076377456414754794132405012815369946}{6661925393880961739780877353424829879888505461} a^{16} + \frac{15701340069958253725675768107198141520616944227}{46633477757166732178466141473973809159219538227} a^{15} + \frac{8326491895217010192409123588152334932978529610}{46633477757166732178466141473973809159219538227} a^{14} - \frac{6777855073020105915208705566610281699770333109}{46633477757166732178466141473973809159219538227} a^{13} + \frac{14698866739220473611883889657603746538700445030}{46633477757166732178466141473973809159219538227} a^{12} - \frac{17013808011548619126792684353298809915354978686}{46633477757166732178466141473973809159219538227} a^{11} - \frac{10787754453440428812991670721831484544272951115}{46633477757166732178466141473973809159219538227} a^{10} - \frac{1749234008033168676645806154159969624889901183}{46633477757166732178466141473973809159219538227} a^{9} + \frac{1265989287549897662296953166790402516036264221}{6661925393880961739780877353424829879888505461} a^{8} - \frac{17338297483220019451503539426168603841878054682}{46633477757166732178466141473973809159219538227} a^{7} + \frac{6216410367430633857044635583319699721452418189}{46633477757166732178466141473973809159219538227} a^{6} + \frac{13103282031554582137842560950156107373117170383}{46633477757166732178466141473973809159219538227} a^{5} - \frac{1524452840171120040282850091183990578435679096}{46633477757166732178466141473973809159219538227} a^{4} + \frac{11236321763740222083409684802742537115671698928}{46633477757166732178466141473973809159219538227} a^{3} - \frac{6379417569691829892613133126225694651665539}{879876938814466644876719650452336021872066759} a^{2} + \frac{21184273916244984289331456280418939584433200461}{46633477757166732178466141473973809159219538227} a - \frac{11811573347102022370527933879871355132818526217}{46633477757166732178466141473973809159219538227}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8142471608830 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{11}$ (as 22T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 22
The 7 conjugacy class representatives for $D_{11}$
Character table for $D_{11}$

Intermediate fields

\(\Q(\sqrt{4009}) \), 11.11.1035571956771279049.1 x11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 11 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
211Data not computed