Normalized defining polynomial
\( x^{22} - x^{21} - 65 x^{20} - 27 x^{19} + 1709 x^{18} + 2739 x^{17} - 21240 x^{16} - 58584 x^{15} + 107774 x^{14} + 530058 x^{13} + 63350 x^{12} - 2109350 x^{11} - 2370346 x^{10} + 3053082 x^{9} + 7232279 x^{8} + 1113268 x^{7} - 7233811 x^{6} - 5207551 x^{5} + 1572041 x^{4} + 2696745 x^{3} + 394142 x^{2} - 391563 x - 116981 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39437071573367006679286233687044038294749249=3^{11}\cdot 67^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(201=3\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{201}(64,·)$, $\chi_{201}(1,·)$, $\chi_{201}(196,·)$, $\chi_{201}(5,·)$, $\chi_{201}(193,·)$, $\chi_{201}(8,·)$, $\chi_{201}(137,·)$, $\chi_{201}(76,·)$, $\chi_{201}(82,·)$, $\chi_{201}(148,·)$, $\chi_{201}(22,·)$, $\chi_{201}(25,·)$, $\chi_{201}(91,·)$, $\chi_{201}(161,·)$, $\chi_{201}(40,·)$, $\chi_{201}(110,·)$, $\chi_{201}(176,·)$, $\chi_{201}(200,·)$, $\chi_{201}(179,·)$, $\chi_{201}(53,·)$, $\chi_{201}(119,·)$, $\chi_{201}(125,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{37} a^{17} - \frac{2}{37} a^{16} + \frac{12}{37} a^{15} - \frac{11}{37} a^{14} + \frac{8}{37} a^{13} - \frac{5}{37} a^{12} + \frac{13}{37} a^{11} + \frac{17}{37} a^{10} + \frac{16}{37} a^{9} - \frac{10}{37} a^{8} - \frac{14}{37} a^{7} - \frac{5}{37} a^{6} + \frac{6}{37} a^{5} - \frac{14}{37} a^{4} + \frac{13}{37} a^{3} - \frac{5}{37} a^{2} - \frac{18}{37} a - \frac{2}{37}$, $\frac{1}{37} a^{18} + \frac{8}{37} a^{16} + \frac{13}{37} a^{15} - \frac{14}{37} a^{14} + \frac{11}{37} a^{13} + \frac{3}{37} a^{12} + \frac{6}{37} a^{11} + \frac{13}{37} a^{10} - \frac{15}{37} a^{9} + \frac{3}{37} a^{8} + \frac{4}{37} a^{7} - \frac{4}{37} a^{6} - \frac{2}{37} a^{5} - \frac{15}{37} a^{4} - \frac{16}{37} a^{3} + \frac{9}{37} a^{2} - \frac{1}{37} a - \frac{4}{37}$, $\frac{1}{37} a^{19} - \frac{8}{37} a^{16} + \frac{1}{37} a^{15} - \frac{12}{37} a^{14} + \frac{13}{37} a^{13} + \frac{9}{37} a^{12} - \frac{17}{37} a^{11} - \frac{3}{37} a^{10} - \frac{14}{37} a^{9} + \frac{10}{37} a^{8} - \frac{3}{37} a^{7} + \frac{1}{37} a^{6} + \frac{11}{37} a^{5} - \frac{15}{37} a^{4} + \frac{16}{37} a^{3} + \frac{2}{37} a^{2} - \frac{8}{37} a + \frac{16}{37}$, $\frac{1}{6031} a^{20} - \frac{25}{6031} a^{19} + \frac{13}{6031} a^{18} - \frac{3}{6031} a^{17} + \frac{2330}{6031} a^{16} + \frac{2338}{6031} a^{15} + \frac{1260}{6031} a^{14} - \frac{207}{6031} a^{13} - \frac{3003}{6031} a^{12} + \frac{1786}{6031} a^{11} + \frac{1573}{6031} a^{10} - \frac{976}{6031} a^{9} - \frac{449}{6031} a^{8} - \frac{608}{6031} a^{7} - \frac{2570}{6031} a^{6} + \frac{2341}{6031} a^{5} - \frac{96}{6031} a^{4} + \frac{2123}{6031} a^{3} - \frac{2075}{6031} a^{2} - \frac{1441}{6031} a - \frac{1905}{6031}$, $\frac{1}{6578144611528739693887127719} a^{21} - \frac{382464820073392314200654}{6578144611528739693887127719} a^{20} - \frac{23510102032099785253892299}{6578144611528739693887127719} a^{19} - \frac{106677589738394555161828}{177787692203479451186138587} a^{18} + \frac{61540947379205291513208526}{6578144611528739693887127719} a^{17} + \frac{374654346418917356822041774}{6578144611528739693887127719} a^{16} + \frac{1076810937232620527017239261}{6578144611528739693887127719} a^{15} + \frac{1651940490907362375636697711}{6578144611528739693887127719} a^{14} + \frac{559696310635033358491416649}{6578144611528739693887127719} a^{13} - \frac{1949312120661058960318799799}{6578144611528739693887127719} a^{12} - \frac{996899494515906535977296941}{6578144611528739693887127719} a^{11} + \frac{2554956687314247119315847765}{6578144611528739693887127719} a^{10} + \frac{1400211490380659939087718264}{6578144611528739693887127719} a^{9} - \frac{2961060105422468517224379375}{6578144611528739693887127719} a^{8} + \frac{1944135829577892440105742801}{6578144611528739693887127719} a^{7} + \frac{260758239107092886301584831}{6578144611528739693887127719} a^{6} + \frac{2189432081467543572764416612}{6578144611528739693887127719} a^{5} + \frac{1521605334036519759406615766}{6578144611528739693887127719} a^{4} + \frac{291160431269314099075792200}{6578144611528739693887127719} a^{3} + \frac{539688109879897562114936547}{6578144611528739693887127719} a^{2} - \frac{509697101061755813330951808}{6578144611528739693887127719} a + \frac{115483758791211472428235291}{6578144611528739693887127719}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 649525406371000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{201}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 67 | Data not computed | ||||||