Normalized defining polynomial
\( x^{22} - 66 x^{20} + 1881 x^{18} - 30294 x^{16} + 302940 x^{14} - 1945944 x^{12} - 130 x^{11} + 8027019 x^{10} + 4290 x^{9} - 20640906 x^{8} - 51480 x^{7} + 30961359 x^{6} + 270270 x^{5} - 23816430 x^{4} - 579150 x^{3} + 7144929 x^{2} + 347490 x - 561087 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39113793049554550639626744281864455524059155087546195005633=3^{10}\cdot 11^{32}\cdot 73^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $460.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{176} a^{11} - \frac{3}{16} a^{9} + \frac{1}{4} a^{7} + \frac{3}{16} a^{5} + \frac{5}{16} a^{3} - \frac{3}{16} a + \frac{23}{176}$, $\frac{1}{176} a^{12} - \frac{3}{16} a^{10} + \frac{1}{4} a^{8} + \frac{3}{16} a^{6} + \frac{5}{16} a^{4} - \frac{3}{16} a^{2} + \frac{23}{176} a$, $\frac{1}{176} a^{13} + \frac{1}{16} a^{9} + \frac{7}{16} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{3} + \frac{23}{176} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{528} a^{14} - \frac{5}{16} a^{10} - \frac{3}{16} a^{8} - \frac{1}{2} a^{6} + \frac{3}{8} a^{4} + \frac{23}{528} a^{3} - \frac{1}{16} a^{2} + \frac{7}{16} a$, $\frac{1}{528} a^{15} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{5}{16} a^{5} + \frac{23}{528} a^{4} + \frac{1}{8} a^{3} + \frac{7}{16} a^{2} - \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{1584} a^{16} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{7}{16} a^{6} + \frac{23}{1584} a^{5} + \frac{3}{8} a^{4} + \frac{23}{48} a^{3} - \frac{7}{16} a^{2} + \frac{1}{16} a$, $\frac{1}{58608} a^{17} - \frac{5}{19536} a^{16} - \frac{17}{19536} a^{15} + \frac{3}{3256} a^{14} + \frac{1}{814} a^{13} - \frac{3}{3256} a^{12} + \frac{3}{3256} a^{11} + \frac{16}{37} a^{10} + \frac{105}{296} a^{9} - \frac{17}{296} a^{8} + \frac{21}{592} a^{7} + \frac{4931}{14652} a^{6} + \frac{1873}{9768} a^{5} + \frac{527}{3256} a^{4} + \frac{75}{814} a^{3} + \frac{217}{6512} a^{2} + \frac{499}{1628} a + \frac{2217}{6512}$, $\frac{1}{175824} a^{18} - \frac{1}{3256} a^{16} - \frac{5}{19536} a^{15} - \frac{13}{19536} a^{14} + \frac{1}{6512} a^{13} + \frac{9}{6512} a^{12} - \frac{9}{3256} a^{11} + \frac{9}{296} a^{10} + \frac{15}{592} a^{9} + \frac{11}{296} a^{8} - \frac{27659}{87912} a^{7} - \frac{261}{592} a^{6} - \frac{1526}{3663} a^{5} - \frac{9157}{19536} a^{4} - \frac{1183}{4884} a^{3} + \frac{1535}{3256} a^{2} + \frac{247}{1628} a - \frac{87}{1628}$, $\frac{1}{175824} a^{19} + \frac{1}{5328} a^{16} + \frac{7}{9768} a^{15} - \frac{1}{3256} a^{14} + \frac{5}{6512} a^{13} - \frac{15}{6512} a^{12} + \frac{5}{3256} a^{11} + \frac{35}{592} a^{10} + \frac{51}{296} a^{9} + \frac{15665}{175824} a^{8} - \frac{179}{592} a^{7} + \frac{1085}{5328} a^{6} - \frac{569}{2664} a^{5} - \frac{457}{1221} a^{4} - \frac{5935}{19536} a^{3} - \frac{2173}{6512} a^{2} - \frac{939}{6512} a - \frac{3125}{6512}$, $\frac{1}{527472} a^{20} - \frac{5}{58608} a^{16} + \frac{1}{1776} a^{15} + \frac{13}{19536} a^{14} + \frac{15}{6512} a^{13} + \frac{13}{6512} a^{12} - \frac{17}{6512} a^{11} - \frac{251}{592} a^{10} + \frac{54869}{527472} a^{9} + \frac{287}{592} a^{8} - \frac{2495}{7992} a^{7} + \frac{103}{592} a^{6} + \frac{873}{3256} a^{5} + \frac{127}{888} a^{4} + \frac{5953}{19536} a^{3} - \frac{2823}{6512} a^{2} - \frac{1473}{3256} a + \frac{973}{6512}$, $\frac{1}{527472} a^{21} - \frac{5}{58608} a^{16} + \frac{1}{9768} a^{15} - \frac{13}{19536} a^{14} + \frac{1}{407} a^{13} - \frac{5}{3256} a^{12} + \frac{7}{6512} a^{11} - \frac{22591}{131868} a^{10} + \frac{95}{296} a^{9} + \frac{301}{1998} a^{8} - \frac{51}{592} a^{7} - \frac{797}{2664} a^{6} - \frac{7837}{58608} a^{5} + \frac{949}{2442} a^{4} - \frac{2041}{4884} a^{3} + \frac{34}{407} a^{2} - \frac{305}{1628} a + \frac{1417}{3256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 189982300459000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1210 |
| The 25 conjugacy class representatives for t22n11 |
| Character table for t22n11 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||
| 73 | Data not computed | ||||||