Normalized defining polynomial
\( x^{22} - x^{21} - 91 x^{20} + 91 x^{19} + 3589 x^{18} - 3589 x^{17} - 80315 x^{16} + 80315 x^{15} + 1120837 x^{14} - 1120837 x^{13} - 10089915 x^{12} + 10089915 x^{11} + 58493509 x^{10} - 58493509 x^{9} - 210941371 x^{8} + 210941371 x^{7} + 435702341 x^{6} - 435702341 x^{5} - 426489275 x^{4} + 426489275 x^{3} + 104090181 x^{2} - 104090181 x + 7621189 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(341419566026798986253349758444608447265625=3^{11}\cdot 5^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(345=3\cdot 5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{345}(256,·)$, $\chi_{345}(1,·)$, $\chi_{345}(194,·)$, $\chi_{345}(196,·)$, $\chi_{345}(134,·)$, $\chi_{345}(329,·)$, $\chi_{345}(74,·)$, $\chi_{345}(331,·)$, $\chi_{345}(14,·)$, $\chi_{345}(271,·)$, $\chi_{345}(16,·)$, $\chi_{345}(211,·)$, $\chi_{345}(149,·)$, $\chi_{345}(151,·)$, $\chi_{345}(344,·)$, $\chi_{345}(89,·)$, $\chi_{345}(31,·)$, $\chi_{345}(224,·)$, $\chi_{345}(44,·)$, $\chi_{345}(301,·)$, $\chi_{345}(121,·)$, $\chi_{345}(314,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3859123} a^{12} - \frac{534580}{3859123} a^{11} - \frac{48}{3859123} a^{10} + \frac{366782}{3859123} a^{9} + \frac{864}{3859123} a^{8} + \frac{1849734}{3859123} a^{7} - \frac{7168}{3859123} a^{6} - \frac{1370769}{3859123} a^{5} + \frac{26880}{3859123} a^{4} - \frac{1596550}{3859123} a^{3} - \frac{36864}{3859123} a^{2} + \frac{1277240}{3859123} a + \frac{8192}{3859123}$, $\frac{1}{3859123} a^{13} - \frac{52}{3859123} a^{11} + \frac{1720803}{3859123} a^{10} + \frac{1040}{3859123} a^{9} + \frac{632094}{3859123} a^{8} - \frac{9984}{3859123} a^{7} - \frac{1131070}{3859123} a^{6} + \frac{46592}{3859123} a^{5} + \frac{398921}{3859123} a^{4} - \frac{93184}{3859123} a^{3} - \frac{797842}{3859123} a^{2} + \frac{53248}{3859123} a - \frac{825245}{3859123}$, $\frac{1}{3859123} a^{14} + \frac{936504}{3859123} a^{11} - \frac{1456}{3859123} a^{10} + \frac{409143}{3859123} a^{9} + \frac{34944}{3859123} a^{8} - \frac{1422977}{3859123} a^{7} - \frac{326144}{3859123} a^{6} - \frac{1416853}{3859123} a^{5} + \frac{1304576}{3859123} a^{4} + \frac{1082264}{3859123} a^{3} - \frac{1863680}{3859123} a^{2} - \frac{13856}{3859123} a + \frac{425984}{3859123}$, $\frac{1}{3859123} a^{15} - \frac{1680}{3859123} a^{11} - \frac{948141}{3859123} a^{10} + \frac{44800}{3859123} a^{9} - \frac{146603}{3859123} a^{8} - \frac{483840}{3859123} a^{7} + \frac{9126}{82109} a^{6} - \frac{1450675}{3859123} a^{5} + \frac{914073}{3859123} a^{4} - \frac{1158477}{3859123} a^{3} - \frac{444758}{3859123} a^{2} - \frac{910003}{3859123} a + \frac{95756}{3859123}$, $\frac{1}{3859123} a^{16} + \frac{133118}{3859123} a^{11} - \frac{35840}{3859123} a^{10} - \frac{1412523}{3859123} a^{9} + \frac{967680}{3859123} a^{8} + \frac{1388027}{3859123} a^{7} - \frac{1915546}{3859123} a^{6} + \frac{1918584}{3859123} a^{5} + \frac{1549570}{3859123} a^{4} - \frac{558273}{3859123} a^{3} - \frac{1095555}{3859123} a^{2} + \frac{186568}{3859123} a - \frac{1673932}{3859123}$, $\frac{1}{3859123} a^{17} - \frac{43520}{3859123} a^{11} + \frac{1118018}{3859123} a^{10} + \frac{1305600}{3859123} a^{9} - \frac{1711358}{3859123} a^{8} + \frac{395980}{3859123} a^{7} - \frac{954096}{3859123} a^{6} + \frac{805380}{3859123} a^{5} - \frac{1363092}{3859123} a^{4} - \frac{1174511}{3859123} a^{3} - \frac{1355936}{3859123} a^{2} - \frac{67118}{3859123} a + \frac{1629153}{3859123}$, $\frac{1}{3859123} a^{18} - \frac{1010138}{3859123} a^{11} - \frac{783360}{3859123} a^{10} - \frac{691446}{3859123} a^{9} - \frac{593970}{3859123} a^{8} - \frac{39068}{82109} a^{7} + \frac{1442983}{3859123} a^{6} + \frac{952485}{3859123} a^{5} - \frac{671180}{3859123} a^{4} + \frac{297679}{3859123} a^{3} + \frac{1006770}{3859123} a^{2} + \frac{306261}{3859123} a + \frac{1476524}{3859123}$, $\frac{1}{3859123} a^{19} - \frac{992256}{3859123} a^{11} + \frac{990529}{3859123} a^{10} + \frac{879208}{3859123} a^{9} - \frac{1238762}{3859123} a^{8} + \frac{1026873}{3859123} a^{7} - \frac{1951}{3859123} a^{6} - \frac{1617533}{3859123} a^{5} + \frac{17691}{3859123} a^{4} + \frac{402816}{3859123} a^{3} - \frac{743144}{3859123} a^{2} + \frac{416038}{3859123} a + \frac{1090784}{3859123}$, $\frac{1}{3859123} a^{20} + \frac{1093522}{3859123} a^{11} - \frac{439604}{3859123} a^{10} - \frac{1911331}{3859123} a^{9} + \frac{1610751}{3859123} a^{8} - \frac{818216}{3859123} a^{7} - \frac{1744852}{3859123} a^{6} + \frac{1872423}{3859123} a^{5} + \frac{1845043}{3859123} a^{4} - \frac{1631952}{3859123} a^{3} - \frac{1341352}{3859123} a^{2} - \frac{1285468}{3859123} a + \frac{1248114}{3859123}$, $\frac{1}{3859123} a^{21} - \frac{1541761}{3859123} a^{11} + \frac{409126}{3859123} a^{10} - \frac{62940}{3859123} a^{9} - \frac{136089}{3859123} a^{8} + \frac{1879466}{3859123} a^{7} - \frac{31911}{82109} a^{6} - \frac{370445}{3859123} a^{5} - \frac{563421}{3859123} a^{4} + \frac{1680794}{3859123} a^{3} + \frac{1769805}{3859123} a^{2} + \frac{1145871}{3859123} a - \frac{1107741}{3859123}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25638523812500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{345}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | R | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | $22$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||