Normalized defining polynomial
\( x^{22} - 164 x^{20} + 11177 x^{18} - 414569 x^{16} + 9220027 x^{14} - 127930459 x^{12} + 1118415018 x^{10} - 6092366081 x^{8} + 20037463337 x^{6} - 37248632179 x^{4} + 34131252034 x^{2} - 11209161267 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2703460676740003773059376077086698873750288325} a^{20} - \frac{1278989093700838967292614639926909465135312563}{2703460676740003773059376077086698873750288325} a^{18} + \frac{1154795245473810440442204611939851753812496564}{2703460676740003773059376077086698873750288325} a^{16} + \frac{258967015677825546670750724688498436553726274}{540692135348000754611875215417339774750057665} a^{14} - \frac{744101230763264320230737440216613402854154103}{2703460676740003773059376077086698873750288325} a^{12} - \frac{1088717881565588886077277513135908445128454762}{2703460676740003773059376077086698873750288325} a^{10} + \frac{1328415979089616024788376225297659061412543881}{2703460676740003773059376077086698873750288325} a^{8} - \frac{45061146584420692324088356378370992861276558}{108138427069600150922375043083467954950011533} a^{6} - \frac{633035237716662705065613972133953646688997063}{2703460676740003773059376077086698873750288325} a^{4} + \frac{880289813004941015464325409623628506479764083}{2703460676740003773059376077086698873750288325} a^{2} - \frac{559594027479469493704297669678814877284127208}{2703460676740003773059376077086698873750288325}$, $\frac{1}{1046239281898381460173978541832552464141361581775} a^{21} - \frac{258107753384001197407933341963163302471412703438}{1046239281898381460173978541832552464141361581775} a^{19} - \frac{142128620621746389531704727473655188554952784661}{1046239281898381460173978541832552464141361581775} a^{17} + \frac{91635937889489953076077662130218920369313471659}{209247856379676292034795708366510492828272316355} a^{15} + \frac{456140753138297373326803819587435496260944572822}{1046239281898381460173978541832552464141361581775} a^{13} + \frac{166525844076314645043604039266239421727389421388}{1046239281898381460173978541832552464141361581775} a^{11} - \frac{8568730262770140568601794848523109892030113123}{348746427299460486724659513944184154713787193925} a^{9} + \frac{13472242237115598172972792029055123375890165067}{41849571275935258406959141673302098565654463271} a^{7} + \frac{12884268145983356160231266413299540722062444562}{1046239281898381460173978541832552464141361581775} a^{5} - \frac{445190721849095681539332727309681685662317809542}{1046239281898381460173978541832552464141361581775} a^{3} + \frac{199496496051280809712689532034736901780237208842}{1046239281898381460173978541832552464141361581775} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3545348338790000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||