Normalized defining polynomial
\( x^{22} - 9 x^{21} - 18 x^{20} + 357 x^{19} - 275 x^{18} - 5542 x^{17} + 10055 x^{16} + 41692 x^{15} - 107702 x^{14} - 145468 x^{13} + 550877 x^{12} + 109894 x^{11} - 1389694 x^{10} + 606757 x^{9} + 1491233 x^{8} - 1379831 x^{7} - 284987 x^{6} + 767825 x^{5} - 255689 x^{4} - 39833 x^{3} + 37580 x^{2} - 6581 x + 277 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3075626510913487571920886830127053316437=13^{11}\cdot 23^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(299=13\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{299}(64,·)$, $\chi_{299}(1,·)$, $\chi_{299}(131,·)$, $\chi_{299}(196,·)$, $\chi_{299}(261,·)$, $\chi_{299}(12,·)$, $\chi_{299}(77,·)$, $\chi_{299}(142,·)$, $\chi_{299}(144,·)$, $\chi_{299}(209,·)$, $\chi_{299}(259,·)$, $\chi_{299}(25,·)$, $\chi_{299}(27,·)$, $\chi_{299}(220,·)$, $\chi_{299}(285,·)$, $\chi_{299}(246,·)$, $\chi_{299}(105,·)$, $\chi_{299}(170,·)$, $\chi_{299}(116,·)$, $\chi_{299}(118,·)$, $\chi_{299}(233,·)$, $\chi_{299}(248,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{367} a^{20} + \frac{175}{367} a^{19} - \frac{42}{367} a^{18} + \frac{91}{367} a^{17} - \frac{134}{367} a^{16} - \frac{158}{367} a^{15} - \frac{39}{367} a^{14} + \frac{19}{367} a^{13} + \frac{150}{367} a^{12} - \frac{161}{367} a^{11} - \frac{97}{367} a^{10} + \frac{81}{367} a^{9} - \frac{19}{367} a^{8} - \frac{127}{367} a^{7} - \frac{35}{367} a^{6} - \frac{81}{367} a^{5} - \frac{3}{367} a^{4} - \frac{84}{367} a^{3} - \frac{148}{367} a^{2} - \frac{80}{367} a + \frac{93}{367}$, $\frac{1}{641904678234023036736096420278574686835663577} a^{21} + \frac{576753779023090166251566255688927781647123}{641904678234023036736096420278574686835663577} a^{20} - \frac{52594101256677690818011092901589342578780060}{641904678234023036736096420278574686835663577} a^{19} + \frac{262228908332976170868509486300654696050349032}{641904678234023036736096420278574686835663577} a^{18} + \frac{116111569484736643506078294558533099086464985}{641904678234023036736096420278574686835663577} a^{17} - \frac{212978128000834684080272955997451350998778446}{641904678234023036736096420278574686835663577} a^{16} - \frac{166719380572895283989909371134984575891629332}{641904678234023036736096420278574686835663577} a^{15} + \frac{66521441526614842608852807445114938370116410}{641904678234023036736096420278574686835663577} a^{14} - \frac{209228099944680722340144775520732376491491026}{641904678234023036736096420278574686835663577} a^{13} - \frac{24677958370940791917121027477851438285516529}{641904678234023036736096420278574686835663577} a^{12} + \frac{226830827458245311510736365601447569337477304}{641904678234023036736096420278574686835663577} a^{11} + \frac{241874532594201628094945373596786321086880062}{641904678234023036736096420278574686835663577} a^{10} + \frac{198399459215204109848959543469548681705414552}{641904678234023036736096420278574686835663577} a^{9} + \frac{153040747775229326037187509821691197213569437}{641904678234023036736096420278574686835663577} a^{8} + \frac{70436921781925456779565106378279921920292623}{641904678234023036736096420278574686835663577} a^{7} + \frac{159728231117724302262358778193501056741938141}{641904678234023036736096420278574686835663577} a^{6} - \frac{278252748879797446274603356471464143987264656}{641904678234023036736096420278574686835663577} a^{5} - \frac{317682895240662054778867224805993505119176056}{641904678234023036736096420278574686835663577} a^{4} - \frac{75346719285738061517884691726902467644726247}{641904678234023036736096420278574686835663577} a^{3} - \frac{38832794858665735522307268033030271620046043}{641904678234023036736096420278574686835663577} a^{2} - \frac{157966794850664077907819914719368685432914147}{641904678234023036736096420278574686835663577} a + \frac{256507705218927077868966620368974298346826378}{641904678234023036736096420278574686835663577}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3411497799150 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | R | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |