Properties

Label 22.22.3053343641...8013.1
Degree $22$
Signature $[22, 0]$
Discriminant $23^{20}\cdot 37^{11}$
Root discriminant $105.20$
Ramified primes $23, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1647782009, -4228140005, 746605202, 7718191075, 1071244813, -6090097243, -1010896265, 2680513897, 340654907, -717482927, -53972002, 121271266, 3288569, -13126552, 173110, 903508, -41461, -38122, 2755, 897, -84, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 - 84*x^20 + 897*x^19 + 2755*x^18 - 38122*x^17 - 41461*x^16 + 903508*x^15 + 173110*x^14 - 13126552*x^13 + 3288569*x^12 + 121271266*x^11 - 53972002*x^10 - 717482927*x^9 + 340654907*x^8 + 2680513897*x^7 - 1010896265*x^6 - 6090097243*x^5 + 1071244813*x^4 + 7718191075*x^3 + 746605202*x^2 - 4228140005*x - 1647782009)
 
gp: K = bnfinit(x^22 - 9*x^21 - 84*x^20 + 897*x^19 + 2755*x^18 - 38122*x^17 - 41461*x^16 + 903508*x^15 + 173110*x^14 - 13126552*x^13 + 3288569*x^12 + 121271266*x^11 - 53972002*x^10 - 717482927*x^9 + 340654907*x^8 + 2680513897*x^7 - 1010896265*x^6 - 6090097243*x^5 + 1071244813*x^4 + 7718191075*x^3 + 746605202*x^2 - 4228140005*x - 1647782009, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} - 84 x^{20} + 897 x^{19} + 2755 x^{18} - 38122 x^{17} - 41461 x^{16} + 903508 x^{15} + 173110 x^{14} - 13126552 x^{13} + 3288569 x^{12} + 121271266 x^{11} - 53972002 x^{10} - 717482927 x^{9} + 340654907 x^{8} + 2680513897 x^{7} - 1010896265 x^{6} - 6090097243 x^{5} + 1071244813 x^{4} + 7718191075 x^{3} + 746605202 x^{2} - 4228140005 x - 1647782009 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(305334364114002390216524630254855801940178013=23^{20}\cdot 37^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $105.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(851=23\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{851}(1,·)$, $\chi_{851}(519,·)$, $\chi_{851}(73,·)$, $\chi_{851}(75,·)$, $\chi_{851}(334,·)$, $\chi_{851}(591,·)$, $\chi_{851}(593,·)$, $\chi_{851}(147,·)$, $\chi_{851}(223,·)$, $\chi_{851}(739,·)$, $\chi_{851}(36,·)$, $\chi_{851}(554,·)$, $\chi_{851}(556,·)$, $\chi_{851}(813,·)$, $\chi_{851}(110,·)$, $\chi_{851}(369,·)$, $\chi_{851}(371,·)$, $\chi_{851}(630,·)$, $\chi_{851}(186,·)$, $\chi_{851}(443,·)$, $\chi_{851}(445,·)$, $\chi_{851}(702,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{895021} a^{20} + \frac{359815}{895021} a^{19} + \frac{437909}{895021} a^{18} - \frac{338984}{895021} a^{17} + \frac{390010}{895021} a^{16} - \frac{225831}{895021} a^{15} + \frac{405685}{895021} a^{14} + \frac{248547}{895021} a^{13} + \frac{398386}{895021} a^{12} - \frac{154468}{895021} a^{11} - \frac{396000}{895021} a^{10} - \frac{273860}{895021} a^{9} - \frac{421950}{895021} a^{8} + \frac{399}{6533} a^{7} + \frac{257095}{895021} a^{6} + \frac{179255}{895021} a^{5} + \frac{66922}{895021} a^{4} - \frac{403889}{895021} a^{3} + \frac{60172}{895021} a^{2} - \frac{19908}{895021} a - \frac{197168}{895021}$, $\frac{1}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{21} + \frac{78294159738476390521056006444703851818165937717207496800057347853646709}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{20} - \frac{10445007469734589114595420601497842044019841823195811405769598101196403460217}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{19} - \frac{61392061061880083059262320417244670461559944211873546757990202323830597560004}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{18} + \frac{62157252692870921744047820974263414998615062150377386629229438662269723599485}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{17} - \frac{66675866352570737988999176869715252837053233687027867959843734740581602324485}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{16} + \frac{37004159841942883859530747319304833074767700816404080687798595509248283197812}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{15} + \frac{62588284552844981124188642159582501850154839937386298578976367944052846739480}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{14} - \frac{53361684200750738099103503020972249100076302963206296035941562980703263574100}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{13} - \frac{25593325533159369177361521563490961929311190022533975633302597379105511978337}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{12} - \frac{20687949888992200234765174425375715817923880710702658819496941204459260747835}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{11} - \frac{21325744127507906944358027573616598178858220039058961338845522149376257467119}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{10} - \frac{38610196417169377777107269569819620050285361475666246004183598723216761721387}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{9} - \frac{79915807685102573313198235777719624901474288214942154414129345021741325741521}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{8} + \frac{18204385399790828627094364311967071304445524672075877948078086438710073599479}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{7} + \frac{56174079953792666348737305470004878088522949033173649410021052855600756447354}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{6} - \frac{37116510684180674926141153983784808703339124785069929919824986847039341053857}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{5} + \frac{27547834211870048775082066559208978494806597960855006922911885978820606939666}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{4} + \frac{12783817687008815186612632188739352563650753923163950296443340597865149209113}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{3} - \frac{26744438727015134492673821303647450877970916152351450226466288279097295218737}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a^{2} - \frac{72738348477293212713894193409023903774959854608222506754649798313959528818786}{160449753851598888434142434134739346661211981160197543028874658977479820801301} a + \frac{21149764508150057516375274067740359591517213019415457749138170100531440749139}{160449753851598888434142434134739346661211981160197543028874658977479820801301}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1888088815265438.8 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{37}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ $22$ $22$ R $22$ $22$ R ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
23Data not computed
37Data not computed