Normalized defining polynomial
\( x^{22} - 110 x^{20} + 4312 x^{18} - 75570 x^{16} + 621984 x^{14} - 2701050 x^{12} + 6620625 x^{10} - 9309762 x^{8} + 7191756 x^{6} - 2622928 x^{4} + 272987 x^{2} - 7942 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28122027152338449528280551028208841939494268567552=2^{53}\cdot 3^{20}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $176.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{2}{9} a^{4} - \frac{2}{9} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} - \frac{2}{9} a^{5} - \frac{2}{9} a^{3} - \frac{2}{9} a$, $\frac{1}{207} a^{18} - \frac{8}{207} a^{16} - \frac{2}{207} a^{14} + \frac{4}{207} a^{12} + \frac{16}{207} a^{10} - \frac{8}{207} a^{8} + \frac{55}{207} a^{6} + \frac{100}{207} a^{4} - \frac{98}{207} a^{2} - \frac{5}{69}$, $\frac{1}{207} a^{19} - \frac{8}{207} a^{17} - \frac{2}{207} a^{15} + \frac{4}{207} a^{13} + \frac{16}{207} a^{11} - \frac{8}{207} a^{9} + \frac{55}{207} a^{7} + \frac{100}{207} a^{5} - \frac{98}{207} a^{3} - \frac{5}{69} a$, $\frac{1}{1147058073298117492767} a^{20} - \frac{160398460988785995}{127450897033124165863} a^{18} - \frac{32752202022939472261}{1147058073298117492767} a^{16} - \frac{27425602170423397210}{1147058073298117492767} a^{14} - \frac{38905813846717834816}{1147058073298117492767} a^{12} + \frac{104236419586562298866}{1147058073298117492767} a^{10} + \frac{121689493741532105621}{1147058073298117492767} a^{8} + \frac{394759495920276246386}{1147058073298117492767} a^{6} - \frac{15459932001801445523}{49872090143396412729} a^{4} - \frac{467758517905191350516}{1147058073298117492767} a^{2} + \frac{161989505280204020657}{1147058073298117492767}$, $\frac{1}{21794103392664232362573} a^{21} + \frac{5060147966299910096}{7264701130888077454191} a^{19} + \frac{598960939793415088973}{21794103392664232362573} a^{17} - \frac{60673662266021005696}{21794103392664232362573} a^{15} + \frac{41699773081222230386}{1147058073298117492767} a^{13} - \frac{776837172946774326013}{21794103392664232362573} a^{11} + \frac{1900460708856004159622}{21794103392664232362573} a^{9} + \frac{6662018823940425445997}{21794103392664232362573} a^{7} - \frac{425278411875798054470}{947569712724531841851} a^{5} - \frac{7449851137980689132576}{21794103392664232362573} a^{3} + \frac{5265566729954436923258}{21794103392664232362573} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3052033260290000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.552054582080600113152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||