Normalized defining polynomial
\( x^{22} - 110 x^{20} - 66 x^{19} + 4180 x^{18} + 5016 x^{17} - 70653 x^{16} - 101112 x^{15} + 642477 x^{14} + 940962 x^{13} - 3450678 x^{12} - 4810374 x^{11} + 11274747 x^{10} + 14632332 x^{9} - 22009119 x^{8} - 27704688 x^{7} + 24186393 x^{6} + 32367456 x^{5} - 12274108 x^{4} - 21398190 x^{3} + 85745 x^{2} + 6107310 x + 1650137 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26819255020464372185020972278794137897009152=2^{33}\cdot 3^{20}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{23} a^{20} + \frac{1}{23} a^{19} + \frac{11}{23} a^{18} - \frac{4}{23} a^{17} - \frac{1}{23} a^{16} + \frac{4}{23} a^{15} + \frac{2}{23} a^{14} - \frac{5}{23} a^{13} + \frac{7}{23} a^{11} - \frac{4}{23} a^{10} - \frac{8}{23} a^{9} + \frac{4}{23} a^{8} - \frac{5}{23} a^{7} + \frac{10}{23} a^{6} - \frac{7}{23} a^{5} + \frac{4}{23} a^{4} + \frac{8}{23} a^{3} + \frac{8}{23} a^{2} - \frac{5}{23}$, $\frac{1}{117287396327961242918310353946308293166260018291571} a^{21} + \frac{1115467766414827885644670094121395167184630921065}{117287396327961242918310353946308293166260018291571} a^{20} - \frac{48287407052657365104011114300446518610877566889013}{117287396327961242918310353946308293166260018291571} a^{19} + \frac{2942245198405376448886347725122291668181196839419}{6899258607527131936371197290959311362721177546563} a^{18} + \frac{2427516178878281122158178976652125046827077681496}{5099452014259184474709145823752534485489566012677} a^{17} - \frac{9206112465113092006233050419753370276819626308159}{117287396327961242918310353946308293166260018291571} a^{16} - \frac{40445896949228541967740782326790280123637218005900}{117287396327961242918310353946308293166260018291571} a^{15} + \frac{7658712298138522166462450320103727751872729677212}{117287396327961242918310353946308293166260018291571} a^{14} - \frac{38278193947225314441535349842572849945229467044454}{117287396327961242918310353946308293166260018291571} a^{13} + \frac{22896857098622184337414031258598348737769558658943}{117287396327961242918310353946308293166260018291571} a^{12} - \frac{641186097881649208043842126446870923541421161567}{5099452014259184474709145823752534485489566012677} a^{11} + \frac{14458489625241485768710219906186877672657564241691}{117287396327961242918310353946308293166260018291571} a^{10} - \frac{2774895171352945254430272826046998573076259241320}{117287396327961242918310353946308293166260018291571} a^{9} + \frac{54477420180168628436032998664294066213241834451086}{117287396327961242918310353946308293166260018291571} a^{8} + \frac{49094569713746196859839534547694033151008911175327}{117287396327961242918310353946308293166260018291571} a^{7} + \frac{14388187344220928725001322073234561208345707186248}{117287396327961242918310353946308293166260018291571} a^{6} - \frac{548532961589081457111888914082466429322515069782}{5099452014259184474709145823752534485489566012677} a^{5} - \frac{45459831324393067828341678593464116142569428432571}{117287396327961242918310353946308293166260018291571} a^{4} + \frac{858898792259984862406597280236174701049022388771}{6899258607527131936371197290959311362721177546563} a^{3} + \frac{41597882881529653408602319461346517307913115977343}{117287396327961242918310353946308293166260018291571} a^{2} + \frac{12833313214937225054805543794936218180027654309360}{117287396327961242918310353946308293166260018291571} a + \frac{7136560943965696478389381106282502617420913400985}{117287396327961242918310353946308293166260018291571}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3109756315010000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 110 |
| The 11 conjugacy class representatives for $F_{11}$ |
| Character table for $F_{11}$ |
Intermediate fields
| \(\Q(\sqrt{22}) \), 11.11.552054582080600113152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 11 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||