Properties

Label 22.22.2611441967...3824.1
Degree $22$
Signature $[22, 0]$
Discriminant $2^{33}\cdot 3^{11}\cdot 23^{20}$
Root discriminant $84.73$
Ramified primes $2, 3, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2672279, -2672256, 21937542, 17930170, -62983979, -40082434, 82921103, 39793946, -56643133, -20144336, 21755176, 5663424, -4958124, -929756, 691144, 90766, -59231, -5168, 3034, 158, -85, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 85*x^20 + 158*x^19 + 3034*x^18 - 5168*x^17 - 59231*x^16 + 90766*x^15 + 691144*x^14 - 929756*x^13 - 4958124*x^12 + 5663424*x^11 + 21755176*x^10 - 20144336*x^9 - 56643133*x^8 + 39793946*x^7 + 82921103*x^6 - 40082434*x^5 - 62983979*x^4 + 17930170*x^3 + 21937542*x^2 - 2672256*x - 2672279)
 
gp: K = bnfinit(x^22 - 2*x^21 - 85*x^20 + 158*x^19 + 3034*x^18 - 5168*x^17 - 59231*x^16 + 90766*x^15 + 691144*x^14 - 929756*x^13 - 4958124*x^12 + 5663424*x^11 + 21755176*x^10 - 20144336*x^9 - 56643133*x^8 + 39793946*x^7 + 82921103*x^6 - 40082434*x^5 - 62983979*x^4 + 17930170*x^3 + 21937542*x^2 - 2672256*x - 2672279, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 85 x^{20} + 158 x^{19} + 3034 x^{18} - 5168 x^{17} - 59231 x^{16} + 90766 x^{15} + 691144 x^{14} - 929756 x^{13} - 4958124 x^{12} + 5663424 x^{11} + 21755176 x^{10} - 20144336 x^{9} - 56643133 x^{8} + 39793946 x^{7} + 82921103 x^{6} - 40082434 x^{5} - 62983979 x^{4} + 17930170 x^{3} + 21937542 x^{2} - 2672256 x - 2672279 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2611441967281400084968119933496263205453824=2^{33}\cdot 3^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $84.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(552=2^{3}\cdot 3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{552}(1,·)$, $\chi_{552}(515,·)$, $\chi_{552}(193,·)$, $\chi_{552}(265,·)$, $\chi_{552}(395,·)$, $\chi_{552}(131,·)$, $\chi_{552}(25,·)$, $\chi_{552}(409,·)$, $\chi_{552}(347,·)$, $\chi_{552}(361,·)$, $\chi_{552}(289,·)$, $\chi_{552}(35,·)$, $\chi_{552}(169,·)$, $\chi_{552}(323,·)$, $\chi_{552}(491,·)$, $\chi_{552}(49,·)$, $\chi_{552}(179,·)$, $\chi_{552}(73,·)$, $\chi_{552}(371,·)$, $\chi_{552}(121,·)$, $\chi_{552}(59,·)$, $\chi_{552}(443,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} - \frac{15}{47} a^{18} + \frac{7}{47} a^{17} - \frac{5}{47} a^{16} - \frac{16}{47} a^{15} - \frac{19}{47} a^{14} + \frac{5}{47} a^{13} - \frac{4}{47} a^{12} + \frac{1}{47} a^{11} + \frac{20}{47} a^{10} - \frac{5}{47} a^{9} - \frac{22}{47} a^{8} + \frac{2}{47} a^{7} - \frac{10}{47} a^{6} + \frac{11}{47} a^{5} - \frac{11}{47} a^{4} - \frac{11}{47} a^{3} - \frac{2}{47} a^{2} + \frac{21}{47} a$, $\frac{1}{47} a^{20} + \frac{17}{47} a^{18} + \frac{6}{47} a^{17} + \frac{3}{47} a^{16} + \frac{23}{47} a^{15} + \frac{2}{47} a^{14} - \frac{23}{47} a^{13} - \frac{12}{47} a^{12} - \frac{12}{47} a^{11} + \frac{13}{47} a^{10} - \frac{3}{47} a^{9} + \frac{1}{47} a^{8} + \frac{20}{47} a^{7} + \frac{2}{47} a^{6} + \frac{13}{47} a^{5} + \frac{12}{47} a^{4} + \frac{21}{47} a^{3} - \frac{9}{47} a^{2} - \frac{14}{47} a$, $\frac{1}{19572085544165529777021928002751619850500993511527301387791220644471} a^{21} - \frac{67793601747447861088880423420588670733369122869008105819234234755}{19572085544165529777021928002751619850500993511527301387791220644471} a^{20} + \frac{53089816003393565996875752300452429266925519684945564339797886618}{19572085544165529777021928002751619850500993511527301387791220644471} a^{19} - \frac{3762057825092916016377187928591480454350818103343783514345678096603}{19572085544165529777021928002751619850500993511527301387791220644471} a^{18} + \frac{3459096080033799592862897069596690302333528121709167113859946688373}{19572085544165529777021928002751619850500993511527301387791220644471} a^{17} - \frac{6643917614197155786578326667173034878671101558140042884712376241115}{19572085544165529777021928002751619850500993511527301387791220644471} a^{16} + \frac{7666512773576002435170677658191319586048328323791235432129661865373}{19572085544165529777021928002751619850500993511527301387791220644471} a^{15} + \frac{2282990875373252310263478961525986270160157394678032928309436518388}{19572085544165529777021928002751619850500993511527301387791220644471} a^{14} - \frac{5023614081115098952489132647363830532732040060216181846408133346251}{19572085544165529777021928002751619850500993511527301387791220644471} a^{13} - \frac{393990230989210667652358231349262646206043696983532381533095563952}{19572085544165529777021928002751619850500993511527301387791220644471} a^{12} - \frac{81862249769852156216976784371022833142716972225891891795814621845}{416427352003521910149402723462800422351084968330368114633855758393} a^{11} + \frac{4168143954464711934367988693934727854515605552154358757448233376921}{19572085544165529777021928002751619850500993511527301387791220644471} a^{10} + \frac{2223694664958826317779879094196868786044593559023501793913672468221}{19572085544165529777021928002751619850500993511527301387791220644471} a^{9} + \frac{4782187920213044276160300939967367298820408859030215833304522037442}{19572085544165529777021928002751619850500993511527301387791220644471} a^{8} + \frac{6233801708900744617640213528852580817450248552860476192356137744030}{19572085544165529777021928002751619850500993511527301387791220644471} a^{7} + \frac{1924460985193653934080194700010740121796849609569231122526628252053}{19572085544165529777021928002751619850500993511527301387791220644471} a^{6} + \frac{6904681388630653596690624277564248644167685464714941122372205759765}{19572085544165529777021928002751619850500993511527301387791220644471} a^{5} + \frac{6360008972129012115934659436453301873717319185600562733810657878007}{19572085544165529777021928002751619850500993511527301387791220644471} a^{4} - \frac{2808422575996915737064103050310635196690252842132212898724334654195}{19572085544165529777021928002751619850500993511527301387791220644471} a^{3} - \frac{1275503326789758077359789220222818751868505341827080579896188937033}{19572085544165529777021928002751619850500993511527301387791220644471} a^{2} + \frac{3882115907487725213320022837959833021764370746987301016479866890963}{19572085544165529777021928002751619850500993511527301387791220644471} a + \frac{2616936754742675558512343687640188860444864508374906955303141}{7324117558146260093733449240424229599716569082617234722793249}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 152044041063000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{6}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ $22$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$