Normalized defining polynomial
\( x^{22} - 576 x^{20} + 145259 x^{18} - 21111552 x^{16} + 1957294872 x^{14} - 120874641864 x^{12} + 5030770408512 x^{10} - 139151595045408 x^{8} + 2444260894986117 x^{6} - 24604405843720824 x^{4} + 108887749553059407 x^{2} - 26396816028057984 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24402796323422549444668858510960358552762329591784234782163089041212069572638422789466222769600101521528193024=2^{71}\cdot 3^{21}\cdot 337^{8}\cdot 653\cdot 46723\cdot 310501^{8}\cdot 2253079\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93{,}789.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 337, 653, 46723, 310501, 2253079$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491805}{57887320607168480035725746532474501690526662399435613406516} a^{18} + \frac{2309673043835677186437772172189178620982827969187124636359}{14471830151792120008931436633118625422631665599858903351629} a^{16} + \frac{972408849458959380261985691931419558909714252274992879950}{14471830151792120008931436633118625422631665599858903351629} a^{14} + \frac{3828459901465854407083373639528292298093106624567666318060}{14471830151792120008931436633118625422631665599858903351629} a^{12} + \frac{3235940742112591300230203168691733975909036606436698288477}{14471830151792120008931436633118625422631665599858903351629} a^{10} + \frac{6969347845033027283122915325106161642316099685921550449030}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{1683454240084727152190446729609907751011138665286808381533}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{23406594799410675185712678366656526469474928879699153560519}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{10931181295379298123048569637512221939407919342710667800461}{57887320607168480035725746532474501690526662399435613406516} a^{2} - \frac{1423410185825622095563838850634910175814548013453702125692}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{115774641214336960071451493064949003381053324798871226813032} a^{21} + \frac{1440173476862044625438378554874387873293511702887773107478}{14471830151792120008931436633118625422631665599858903351629} a^{19} - \frac{5233137976449411263180347944361910938700353723110404806193}{115774641214336960071451493064949003381053324798871226813032} a^{17} + \frac{486204424729479690130992845965709779454857126137496439975}{14471830151792120008931436633118625422631665599858903351629} a^{15} + \frac{1914229950732927203541686819764146149046553312283833159030}{14471830151792120008931436633118625422631665599858903351629} a^{13} - \frac{5617944704839764354350616732213445723361314496711102531576}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{3484673922516513641561457662553080821158049842960775224515}{14471830151792120008931436633118625422631665599858903351629} a^{9} - \frac{6394187955853696428370494951754358835810263467286047485048}{14471830151792120008931436633118625422631665599858903351629} a^{7} + \frac{34480725807757804850013068165817975221051733519736459845997}{115774641214336960071451493064949003381053324798871226813032} a^{5} + \frac{442581107051602735735358374450800435402968282143529443896}{14471830151792120008931436633118625422631665599858903351629} a^{3} - \frac{20165470895094608391186792035658266125889857653673711854397}{115774641214336960071451493064949003381053324798871226813032} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 653 | Data not computed | ||||||
| 46723 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 2253079 | Data not computed | ||||||