Normalized defining polynomial
\( x^{22} - 9 x^{21} - 62 x^{20} + 717 x^{19} + 1305 x^{18} - 24022 x^{17} - 4969 x^{16} + 440652 x^{15} - 232734 x^{14} - 4834612 x^{13} + 4332757 x^{12} + 32637502 x^{11} - 34619686 x^{10} - 135174899 x^{9} + 145940517 x^{8} + 335982569 x^{7} - 323131047 x^{6} - 485055359 x^{5} + 334596715 x^{4} + 386471695 x^{3} - 104865816 x^{2} - 138936109 x - 24468919 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20937975979670626213353681795476767790826629=23^{20}\cdot 29^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(667=23\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{667}(1,·)$, $\chi_{667}(579,·)$, $\chi_{667}(581,·)$, $\chi_{667}(262,·)$, $\chi_{667}(202,·)$, $\chi_{667}(463,·)$, $\chi_{667}(144,·)$, $\chi_{667}(146,·)$, $\chi_{667}(407,·)$, $\chi_{667}(347,·)$, $\chi_{667}(349,·)$, $\chi_{667}(289,·)$, $\chi_{667}(610,·)$, $\chi_{667}(231,·)$, $\chi_{667}(233,·)$, $\chi_{667}(492,·)$, $\chi_{667}(173,·)$, $\chi_{667}(117,·)$, $\chi_{667}(376,·)$, $\chi_{667}(59,·)$, $\chi_{667}(637,·)$, $\chi_{667}(639,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{21} + \frac{7112366563154723195978169752290914381069754445694476087919489590710944689648}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{20} + \frac{204259300134415462763007457160745134798551312083379897681643278951961563115}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{19} + \frac{737619366978728519501461132214044292985644690318596151128655797058347125066}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{18} + \frac{886061393878244162194733211580713018820968968905227126011316068344007078695}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{17} + \frac{8870373647130594402122571838980644773212226318400655250511724316752542781295}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{16} - \frac{5995528259352226549433399203384936469889991292689631186317814587864419565046}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{15} - \frac{603184417501697196039611951833400788818882542098938491958881667317678934700}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{14} + \frac{484823949265496498922207628940770641710420626908648783775352465931312954022}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{13} + \frac{6687490224239811568615822038785564301678052295780009963163891677158483213203}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{12} + \frac{9683035871693100488474702012333296771879320549430861919836480862251341028962}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{11} - \frac{5213318577693920811443642654644194419594775130945062315810805371304316896569}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{10} + \frac{6763525634057941773126409145624227095900523306527263366447396150353182304297}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{9} + \frac{5496868698860391614972499492658063311347187109664443360473822460778404908127}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{8} + \frac{5385094452199195428761955391989957354124667075335207299961549023883902485411}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{7} - \frac{3086684992948294316302942224309078226821307023049478228086809404761349490694}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{6} + \frac{6011200265493710097510288778125008931932307381466943217853172819545251834026}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{5} + \frac{6237463101609159017076324401584919793124543941235417393984525652586439717276}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{4} - \frac{1269700412027222241157006099281598211649893065297929355391926375221863566017}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{3} - \frac{8511210082422022700219511606832227895482589428651200194332292105844461552972}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a^{2} + \frac{6072282346941746251604349088534889736288996240204422001962589697040024042823}{19554833962123412723531710556561503870813703089072316470128119654668166674969} a + \frac{8054386175900244869571185246061614376196888591344794746055007839414129157355}{19554833962123412723531710556561503870813703089072316470128119654668166674969}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 269532187377000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |
| 29 | Data not computed | ||||||