Properties

Label 22.22.2053696021...8544.1
Degree $22$
Signature $[22, 0]$
Discriminant $2^{22}\cdot 11^{11}\cdot 23^{20}$
Root discriminant $114.73$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-30789776159, -8797078896, 57439955172, 14436561400, -44480164414, -9628969964, 18832650088, 3434361596, -4847415983, -727527486, 799094606, 96213194, -86544524, -8106226, 6197354, 433206, -289511, -14168, 8459, 258, -140, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 140*x^20 + 258*x^19 + 8459*x^18 - 14168*x^17 - 289511*x^16 + 433206*x^15 + 6197354*x^14 - 8106226*x^13 - 86544524*x^12 + 96213194*x^11 + 799094606*x^10 - 727527486*x^9 - 4847415983*x^8 + 3434361596*x^7 + 18832650088*x^6 - 9628969964*x^5 - 44480164414*x^4 + 14436561400*x^3 + 57439955172*x^2 - 8797078896*x - 30789776159)
 
gp: K = bnfinit(x^22 - 2*x^21 - 140*x^20 + 258*x^19 + 8459*x^18 - 14168*x^17 - 289511*x^16 + 433206*x^15 + 6197354*x^14 - 8106226*x^13 - 86544524*x^12 + 96213194*x^11 + 799094606*x^10 - 727527486*x^9 - 4847415983*x^8 + 3434361596*x^7 + 18832650088*x^6 - 9628969964*x^5 - 44480164414*x^4 + 14436561400*x^3 + 57439955172*x^2 - 8797078896*x - 30789776159, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 140 x^{20} + 258 x^{19} + 8459 x^{18} - 14168 x^{17} - 289511 x^{16} + 433206 x^{15} + 6197354 x^{14} - 8106226 x^{13} - 86544524 x^{12} + 96213194 x^{11} + 799094606 x^{10} - 727527486 x^{9} - 4847415983 x^{8} + 3434361596 x^{7} + 18832650088 x^{6} - 9628969964 x^{5} - 44480164414 x^{4} + 14436561400 x^{3} + 57439955172 x^{2} - 8797078896 x - 30789776159 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2053696021140625408463434849100950458853228544=2^{22}\cdot 11^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $114.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1012=2^{2}\cdot 11\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{1012}(1,·)$, $\chi_{1012}(131,·)$, $\chi_{1012}(133,·)$, $\chi_{1012}(967,·)$, $\chi_{1012}(265,·)$, $\chi_{1012}(395,·)$, $\chi_{1012}(397,·)$, $\chi_{1012}(791,·)$, $\chi_{1012}(923,·)$, $\chi_{1012}(837,·)$, $\chi_{1012}(353,·)$, $\chi_{1012}(219,·)$, $\chi_{1012}(485,·)$, $\chi_{1012}(749,·)$, $\chi_{1012}(177,·)$, $\chi_{1012}(969,·)$, $\chi_{1012}(307,·)$, $\chi_{1012}(439,·)$, $\chi_{1012}(441,·)$, $\chi_{1012}(87,·)$, $\chi_{1012}(351,·)$, $\chi_{1012}(703,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{137} a^{20} - \frac{63}{137} a^{19} - \frac{59}{137} a^{18} + \frac{17}{137} a^{17} + \frac{42}{137} a^{16} + \frac{9}{137} a^{15} + \frac{63}{137} a^{14} - \frac{14}{137} a^{13} + \frac{58}{137} a^{12} + \frac{11}{137} a^{11} - \frac{58}{137} a^{10} - \frac{20}{137} a^{9} - \frac{11}{137} a^{8} + \frac{67}{137} a^{7} - \frac{26}{137} a^{6} - \frac{57}{137} a^{5} - \frac{66}{137} a^{4} + \frac{42}{137} a^{3} - \frac{41}{137} a^{2} - \frac{65}{137} a - \frac{58}{137}$, $\frac{1}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{21} - \frac{112031046588349797427435357545952163866309840881966623986193375885122691369577989907}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{20} + \frac{8573428031849360497050092653674491841004333188827153127802070987628208094615952470214}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{19} - \frac{42269160842788553239605335499794098535436232143323929549662159278719619459059680950}{226953583214839242431165319248175690623336450249921672801470293010532021716856407583} a^{18} + \frac{18007241305710816119484597769181690963328875727980514044275400832206638568024332511439}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{17} - \frac{17468552473094906508116131958132261851883876959199936513871894959930727374465973639907}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{16} + \frac{6144157552324326723319995236970015443530253911953296278455011139115825897416293059283}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{15} - \frac{517473156599460404078401642411901071727339373716507777228514889446967301951489754265}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{14} - \frac{18645004803438949122724367643077192638852189663862238270471523885314445208764443092656}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{13} - \frac{22082013237756509032956719005915781081339433591450458579895034771263575959062066363524}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{12} + \frac{16342054762230006213810968435642154729866850341500670418421191837936148937821055440296}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{11} + \frac{18635830436162404608822508832004258282399510490996400953307836424853516936304503609361}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{10} + \frac{3466439572105000362995942671581264595475320320523091859413348049493309795172602643401}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{9} - \frac{9247023602045294276775775643353474891298681741738948187174507421498628253303147337753}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{8} + \frac{6669610282422865223806271562565423911883294079979788956734522133852515813347517035466}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{7} + \frac{25265594985438019999048478440181619502390106755980242018468283498912591135225579561209}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{6} - \frac{17916460296260689135473483779695190219711360339972622620406472462083262257859054415090}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{5} + \frac{10320246792202800440104345644977509375642972316172178011418338344223217531876069056892}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{4} + \frac{20155017744942752192673803695821045518169467219919416820087548155143995441981066846942}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{3} + \frac{20566933669191247202211768134713984066563877067786172442736683209640325427936143861443}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a^{2} + \frac{20556180661829971232542231925056096908403808588009209979150707930793677554890490165557}{51972370556198186516736858107832233152744047107232063071536697099411832973160117336507} a + \frac{2407443133867651729022428855801080617932018362509548425569868935257746453719899}{11917953222435500836589052105664847483239849301576520128208280891169039632245781}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3035479805294090.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{11}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ R $22$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R $22$ $22$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
11Data not computed
23Data not computed