Properties

Label 22.22.1999574734...9249.1
Degree $22$
Signature $[22, 0]$
Discriminant $421^{2}\cdot 3913599589^{10}\cdot 115692385433^{2}$
Root discriminant $402{,}335.24$
Ramified primes $421, 3913599589, 115692385433$
Class number Not computed
Class group Not computed
Galois group 22T51

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-200957389535301956135132770569928284254466122629162705805201402317826353092603069971791081, -22798725120982913639264040796618268980326961172862719464781569239076972125427474194, 22798723985900078548327022529561358312453616137357242512589877765454307023391451962, 2270165637597267278865195276060941498200493335290757444902509490795622424977, -1135082737337117340979212736589910913095311476546586257204562141505863404960, -97753817890131117015806386829370798310090825227154792176518881828628, 32584603183355485909634946704681447022832056003466832943811521734636, 2382875573577308326894544241652333406345733476067116734044261, -595718839192069496369987165264666540405203201509932504884044, -36134837743794543604950652866191954074296615184490417, 7226966902317690915617765163171122089181106876101229, 352604294868670130111344193424712514895639548, -58767377684409992170556055760995021176639986, -2212477675609403926959065035382244332, 316068217715312920637575328756082112, 8662983537627551079745723914, -1082872885988662125300812370, -19840511074945783155, 2204501155911423557, 23569928735, -2356992835, -11, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 11*x^21 - 2356992835*x^20 + 23569928735*x^19 + 2204501155911423557*x^18 - 19840511074945783155*x^17 - 1082872885988662125300812370*x^16 + 8662983537627551079745723914*x^15 + 316068217715312920637575328756082112*x^14 - 2212477675609403926959065035382244332*x^13 - 58767377684409992170556055760995021176639986*x^12 + 352604294868670130111344193424712514895639548*x^11 + 7226966902317690915617765163171122089181106876101229*x^10 - 36134837743794543604950652866191954074296615184490417*x^9 - 595718839192069496369987165264666540405203201509932504884044*x^8 + 2382875573577308326894544241652333406345733476067116734044261*x^7 + 32584603183355485909634946704681447022832056003466832943811521734636*x^6 - 97753817890131117015806386829370798310090825227154792176518881828628*x^5 - 1135082737337117340979212736589910913095311476546586257204562141505863404960*x^4 + 2270165637597267278865195276060941498200493335290757444902509490795622424977*x^3 + 22798723985900078548327022529561358312453616137357242512589877765454307023391451962*x^2 - 22798725120982913639264040796618268980326961172862719464781569239076972125427474194*x - 200957389535301956135132770569928284254466122629162705805201402317826353092603069971791081)
 
gp: K = bnfinit(x^22 - 11*x^21 - 2356992835*x^20 + 23569928735*x^19 + 2204501155911423557*x^18 - 19840511074945783155*x^17 - 1082872885988662125300812370*x^16 + 8662983537627551079745723914*x^15 + 316068217715312920637575328756082112*x^14 - 2212477675609403926959065035382244332*x^13 - 58767377684409992170556055760995021176639986*x^12 + 352604294868670130111344193424712514895639548*x^11 + 7226966902317690915617765163171122089181106876101229*x^10 - 36134837743794543604950652866191954074296615184490417*x^9 - 595718839192069496369987165264666540405203201509932504884044*x^8 + 2382875573577308326894544241652333406345733476067116734044261*x^7 + 32584603183355485909634946704681447022832056003466832943811521734636*x^6 - 97753817890131117015806386829370798310090825227154792176518881828628*x^5 - 1135082737337117340979212736589910913095311476546586257204562141505863404960*x^4 + 2270165637597267278865195276060941498200493335290757444902509490795622424977*x^3 + 22798723985900078548327022529561358312453616137357242512589877765454307023391451962*x^2 - 22798725120982913639264040796618268980326961172862719464781569239076972125427474194*x - 200957389535301956135132770569928284254466122629162705805201402317826353092603069971791081, 1)
 

Normalized defining polynomial

\( x^{22} - 11 x^{21} - 2356992835 x^{20} + 23569928735 x^{19} + 2204501155911423557 x^{18} - 19840511074945783155 x^{17} - 1082872885988662125300812370 x^{16} + 8662983537627551079745723914 x^{15} + 316068217715312920637575328756082112 x^{14} - 2212477675609403926959065035382244332 x^{13} - 58767377684409992170556055760995021176639986 x^{12} + 352604294868670130111344193424712514895639548 x^{11} + 7226966902317690915617765163171122089181106876101229 x^{10} - 36134837743794543604950652866191954074296615184490417 x^{9} - 595718839192069496369987165264666540405203201509932504884044 x^{8} + 2382875573577308326894544241652333406345733476067116734044261 x^{7} + 32584603183355485909634946704681447022832056003466832943811521734636 x^{6} - 97753817890131117015806386829370798310090825227154792176518881828628 x^{5} - 1135082737337117340979212736589910913095311476546586257204562141505863404960 x^{4} + 2270165637597267278865195276060941498200493335290757444902509490795622424977 x^{3} + 22798723985900078548327022529561358312453616137357242512589877765454307023391451962 x^{2} - 22798725120982913639264040796618268980326961172862719464781569239076972125427474194 x - 200957389535301956135132770569928284254466122629162705805201402317826353092603069971791081 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1999574734888719388539129880163170308824350924289584365834631681119569613436570298945213710661100594794590249553040598669249=421^{2}\cdot 3913599589^{10}\cdot 115692385433^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $402{,}335.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $421, 3913599589, 115692385433$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3913599589} a^{4} - \frac{2}{3913599589} a^{3} - \frac{1378592994}{3913599589} a^{2} + \frac{1378592995}{3913599589} a + \frac{1856751520}{3913599589}$, $\frac{1}{3913599589} a^{5} - \frac{1378592998}{3913599589} a^{3} - \frac{1378592993}{3913599589} a^{2} + \frac{700337921}{3913599589} a - \frac{200096549}{3913599589}$, $\frac{1}{15316261743020968921} a^{6} - \frac{3}{15316261743020968921} a^{5} + \frac{1556606700}{15316261743020968921} a^{4} - \frac{3113213395}{15316261743020968921} a^{3} - \frac{7019825146138825529}{15316261743020968921} a^{2} + \frac{7019825147695432226}{15316261743020968921} a - \frac{2951539235694659172}{15316261743020968921}$, $\frac{1}{15316261743020968921} a^{7} + \frac{1556606691}{15316261743020968921} a^{5} + \frac{1556606705}{15316261743020968921} a^{4} - \frac{7019825155478465714}{15316261743020968921} a^{3} + \frac{1276611452299924560}{15316261743020968921} a^{2} + \frac{2791674464370668585}{15316261743020968921} a + \frac{6461644035936991405}{15316261743020968921}$, $\frac{1}{59941715662503287587607373469} a^{8} - \frac{4}{59941715662503287587607373469} a^{7} + \frac{578206806}{59941715662503287587607373469} a^{6} - \frac{1734620404}{59941715662503287587607373469} a^{5} + \frac{6773452765045846887}{59941715662503287587607373469} a^{4} - \frac{13546905527200659772}{59941715662503287587607373469} a^{3} - \frac{2955675427557385032254627838}{59941715662503287587607373469} a^{2} + \frac{2955675434330837795565854324}{59941715662503287587607373469} a + \frac{19163603919559494460233379967}{59941715662503287587607373469}$, $\frac{1}{59941715662503287587607373469} a^{9} + \frac{578206790}{59941715662503287587607373469} a^{7} + \frac{578206820}{59941715662503287587607373469} a^{6} + \frac{6773452758107365271}{59941715662503287587607373469} a^{5} - \frac{1769356210038241145}{59941715662503287587607373469} a^{4} - \frac{2955675451112483655015329084}{59941715662503287587607373469} a^{3} + \frac{12247864857300233816129682446}{59941715662503287587607373469} a^{2} + \frac{9871414508367647749893488868}{59941715662503287587607373469} a - \frac{11725792256337343182613363521}{59941715662503287587607373469}$, $\frac{1}{234587873780727729014009018301647904241} a^{10} - \frac{5}{234587873780727729014009018301647904241} a^{9} - \frac{400193087}{234587873780727729014009018301647904241} a^{8} + \frac{1600772378}{234587873780727729014009018301647904241} a^{7} + \frac{6207735287345368309}{234587873780727729014009018301647904241} a^{6} - \frac{18623205867638808271}{234587873780727729014009018301647904241} a^{5} - \frac{9582820901665701299572538705}{234587873780727729014009018301647904241} a^{4} + \frac{19165641834370079047077325646}{234587873780727729014009018301647904241} a^{3} + \frac{41681990593274707875589933785031972738}{234587873780727729014009018301647904241} a^{2} - \frac{41681990602857528795878840953443899004}{234587873780727729014009018301647904241} a - \frac{67699097035432937190463162239613660857}{234587873780727729014009018301647904241}$, $\frac{1}{234587873780727729014009018301647904241} a^{11} - \frac{400193112}{234587873780727729014009018301647904241} a^{9} - \frac{400193057}{234587873780727729014009018301647904241} a^{8} + \frac{6207735295349230199}{234587873780727729014009018301647904241} a^{7} - \frac{2900791173932935647}{234587873780727729014009018301647904241} a^{6} - \frac{9582820948832945408703673297}{234587873780727729014009018301647904241} a^{5} + \frac{7351857340404741673901634890}{234587873780727729014009018301647904241} a^{4} + \frac{41681990616902276942132682055939750825}{234587873780727729014009018301647904241} a^{3} - \frac{42977661349376143426483241082486431532}{234587873780727729014009018301647904241} a^{2} - \frac{66403426300728107100991343598880850127}{234587873780727729014009018301647904241} a + \frac{52595807750019288193569669439652616248}{234587873780727729014009018301647904241}$, $\frac{1}{918083006412639916390129069267622716060288956949} a^{12} - \frac{6}{918083006412639916390129069267622716060288956949} a^{11} - \frac{1378592979}{918083006412639916390129069267622716060288956949} a^{10} + \frac{6892964950}{918083006412639916390129069267622716060288956949} a^{9} + \frac{6599284160845507970}{918083006412639916390129069267622716060288956949} a^{8} - \frac{26397136684739821646}{918083006412639916390129069267622716060288956949} a^{7} - \frac{15656468448784469188886394607}{918083006412639916390129069267622716060288956949} a^{6} + \frac{46969405438743385992199012438}{918083006412639916390129069267622716060288956949} a^{5} + \frac{51057821557268235321154392750955160477}{918083006412639916390129069267622716060288956949} a^{4} - \frac{102115643192818813071011088301557730204}{918083006412639916390129069267622716060288956949} a^{3} - \frac{143145570958675188889659361951566269385573081660}{918083006412639916390129069267622716060288956949} a^{2} + \frac{143145571009733010493897002731261900651242975266}{918083006412639916390129069267622716060288956949} a + \frac{270166562262259785350363476252570512659644643011}{918083006412639916390129069267622716060288956949}$, $\frac{1}{918083006412639916390129069267622716060288956949} a^{13} - \frac{1378593015}{918083006412639916390129069267622716060288956949} a^{11} - \frac{1378592924}{918083006412639916390129069267622716060288956949} a^{10} + \frac{6599284202203297670}{918083006412639916390129069267622716060288956949} a^{9} - \frac{2117693462687742747}{918083006412639916390129069267622716060288956949} a^{8} - \frac{15656468545902242325241448799}{918083006412639916390129069267622716060288956949} a^{7} + \frac{4116343626247711215651341939}{918083006412639916390129069267622716060288956949} a^{6} + \frac{51057821685827421098553623231543578782}{918083006412639916390129069267622716060288956949} a^{5} - \frac{40794886873620878239518497551978628210}{918083006412639916390129069267622716060288956949} a^{4} - \frac{143145571081316701742320541356854237094175125645}{918083006412639916390129069267622716060288956949} a^{3} + \frac{150245886507329586716327207576238532276403862506}{918083006412639916390129069267622716060288956949} a^{2} + \frac{263066246825983965575690392089324032170682693453}{918083006412639916390129069267622716060288956949} a - \frac{203090123259302870552900671383710250403873608478}{918083006412639916390129069267622716060288956949}$, $\frac{1}{3593009276564391941189403489142720792580610561136845093961} a^{14} - \frac{7}{3593009276564391941189403489142720792580610561136845093961} a^{13} + \frac{1556606719}{3593009276564391941189403489142720792580610561136845093961} a^{12} - \frac{9339640223}{3593009276564391941189403489142720792580610561136845093961} a^{11} + \frac{2552838466598380552}{3593009276564391941189403489142720792580610561136845093961} a^{10} - \frac{12764192247378534216}{3593009276564391941189403489142720792580610561136845093961} a^{9} + \frac{3713748413946880948980972279}{3593009276564391941189403489142720792580610561136845093961} a^{8} - \frac{14854993579202370414388725987}{3593009276564391941189403489142720792580610561136845093961} a^{7} + \frac{5102960141618938144808171485299286995}{3593009276564391941189403489142720792580610561136845093961} a^{6} - \frac{15308880372864336960825825341791121585}{3593009276564391941189403489142720792580610561136845093961} a^{5} + \frac{6719331252525138979195345806495438653885621628}{3593009276564391941189403489142720792580610561136845093961} a^{4} - \frac{13438662479535477354280955828488882778183840242}{3593009276564391941189403489142720792580610561136845093961} a^{3} + \frac{8568358562950521089405008820406739489698749931240920934}{3593009276564391941189403489142720792580610561136845093961} a^{2} - \frac{8568358556231189852188750202934485476220808696479926848}{3593009276564391941189403489142720792580610561136845093961} a + \frac{1922789756035032135484169086187609518346735824816404599}{3593009276564391941189403489142720792580610561136845093961}$, $\frac{1}{3593009276564391941189403489142720792580610561136845093961} a^{15} + \frac{1556606670}{3593009276564391941189403489142720792580610561136845093961} a^{13} + \frac{1556606810}{3593009276564391941189403489142720792580610561136845093961} a^{12} + \frac{2552838401220898991}{3593009276564391941189403489142720792580610561136845093961} a^{11} + \frac{5105677018810129648}{3593009276564391941189403489142720792580610561136845093961} a^{10} + \frac{3713748324597535217331232767}{3593009276564391941189403489142720792580610561136845093961} a^{9} + \frac{11141245318425796228478079966}{3593009276564391941189403489142720792580610561136845093961} a^{8} + \frac{5102960037633983090391578584578205086}{3593009276564391941189403489142720792580610561136845093961} a^{7} + \frac{20411840618468230052831375055303887380}{3593009276564391941189403489142720792580610561136845093961} a^{6} + \frac{6719331145362976369144987080714661261347770533}{3593009276564391941189403489142720792580610561136845093961} a^{5} + \frac{33596656288140495500086464816979187799015511154}{3593009276564391941189403489142720792580610561136845093961} a^{4} + \frac{8568358468879883732656667340440048690276570483954039240}{3593009276564391941189403489142720792580610561136845093961} a^{3} + \frac{51410151384422457773646311539912690951670440822206519690}{3593009276564391941189403489142720792580610561136845093961} a^{2} - \frac{58055720137583296829837082334353788815198925050543083337}{3593009276564391941189403489142720792580610561136845093961} a + \frac{13459528292245224948389183603313266628427150773714832193}{3593009276564391941189403489142720792580610561136845093961}$, $\frac{1}{14061599628035591633073761666264118056185231741434216332482435982029} a^{16} - \frac{8}{14061599628035591633073761666264118056185231741434216332482435982029} a^{15} + \frac{578206829}{14061599628035591633073761666264118056185231741434216332482435982029} a^{14} - \frac{4047447663}{14061599628035591633073761666264118056185231741434216332482435982029} a^{13} + \frac{1029854622398912832}{14061599628035591633073761666264118056185231741434216332482435982029} a^{12} - \frac{6179127681776657737}{14061599628035591633073761666264118056185231741434216332482435982029} a^{11} + \frac{1216051533933579723915903351}{14061599628035591633073761666264118056185231741434216332482435982029} a^{10} - \frac{6080257613025894966424322514}{14061599628035591633073761666264118056185231741434216332482435982029} a^{9} + \frac{1469429090784390040056296366954557719}{14061599628035591633073761666264118056185231741434216332482435982029} a^{8} - \frac{5877716326656014550040220003448385241}{14061599628035591633073761666264118056185231741434216332482435982029} a^{7} + \frac{1726595590878944857929996701346104585595303698}{14061599628035591633073761666264118056185231741434216332482435982029} a^{6} - \frac{5179786752064827456031021085635898277790985125}{14061599628035591633073761666264118056185231741434216332482435982029} a^{5} + \frac{1994165571009706601785074694733176208256121858808588860}{14061599628035591633073761666264118056185231741434216332482435982029} a^{4} - \frac{3988331133386435290319439331686152390099415487883592708}{14061599628035591633073761666264118056185231741434216332482435982029} a^{3} + \frac{2270494401353431582794381428299521005207477100061975259193107189}{14061599628035591633073761666264118056185231741434216332482435982029} a^{2} - \frac{2270494399359266016964461574170986529417645939703375996073189483}{14061599628035591633073761666264118056185231741434216332482435982029} a + \frac{782186582320704710375185886392620507301451958525745911904953582}{14061599628035591633073761666264118056185231741434216332482435982029}$, $\frac{1}{14061599628035591633073761666264118056185231741434216332482435982029} a^{17} + \frac{578206765}{14061599628035591633073761666264118056185231741434216332482435982029} a^{15} + \frac{578206969}{14061599628035591633073761666264118056185231741434216332482435982029} a^{14} + \frac{1029854590019331528}{14061599628035591633073761666264118056185231741434216332482435982029} a^{13} + \frac{2059709297414644919}{14061599628035591633073761666264118056185231741434216332482435982029} a^{12} + \frac{1216051484500558269702641455}{14061599628035591633073761666264118056185231741434216332482435982029} a^{11} + \frac{3648154658442742824902904294}{14061599628035591633073761666264118056185231741434216332482435982029} a^{10} + \frac{1469429042142329135849136635559977607}{14061599628035591633073761666264118056185231741434216332482435982029} a^{9} + \frac{5877716399619105770410150932188076511}{14061599628035591633073761666264118056185231741434216332482435982029} a^{8} + \frac{1726595543857214244681880301024344558008221770}{14061599628035591633073761666264118056185231741434216332482435982029} a^{7} + \frac{8632977974966731407408952525132938406971444459}{14061599628035591633073761666264118056185231741434216332482435982029} a^{6} + \frac{1994165529571412585266455046485007523168935636480707860}{14061599628035591633073761666264118056185231741434216332482435982029} a^{5} + \frac{11964993434691217523961158226179257275949559382585118172}{14061599628035591633073761666264118056185231741434216332482435982029} a^{4} + \frac{2270494369446782515702899105744006351718257979266651356124365525}{14061599628035591633073761666264118056185231741434216332482435982029} a^{3} + \frac{15893460811468186645390589852225181512242170860792426077471668029}{14061599628035591633073761666264118056185231741434216332482435982029} a^{2} - \frac{17381768612553423425340506706975271728039715559101262056680562282}{14061599628035591633073761666264118056185231741434216332482435982029} a + \frac{6257492658565637683001487091140964058411615668205967295239628656}{14061599628035591633073761666264118056185231741434216332482435982029}$, $\frac{1}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{18} - \frac{9}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{17} - \frac{400193060}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{16} + \frac{3201544684}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{15} + \frac{464137124508063882}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{14} - \frac{3248959927583479858}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{13} + \frac{208441883632637197951782784}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{12} - \frac{1250651259559343983455172776}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{11} + \frac{279644401317341246361583058098525386}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{10} - \frac{1398221995122403096614140764410561902}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{9} + \frac{288906325684410320187105011756511113093533996}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{8} - \frac{1155625294348309323771165189750763098775568646}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{7} + \frac{304864627912879565382513744956828805994347314792654879}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{6} - \frac{914593879693950171800990967428337543862360112863649443}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{5} + \frac{319403016064919590994079621154714292252989313883618863737352477}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{4} - \frac{638806030605516050513138463251027199825551106659839401769145596}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{3} + \frac{333203688652401006007709690192883135894783140245405297438116570621684136}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{2} - \frac{333203688332997990857383978026034717597516411770003359835543956747370935}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a - \frac{126627478071610973215919521482343627909951303707837400450957898550805903}{55031470524962644292569312463775207590134001851146703309340348808987505786081}$, $\frac{1}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{19} - \frac{400193141}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{17} - \frac{400192856}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{16} + \frac{464137153321966038}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{15} + \frac{928274192989095080}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{14} + \frac{208441854391997849700464062}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{13} + \frac{625325693134390798110872280}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{12} + \frac{279644390061479910327487207001970402}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{11} + \frac{1118577616733668120640106758476166572}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{10} + \frac{288906313100412364085477142229244233398476878}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{9} + \frac{1444531636811383557912779916057836919066237318}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{8} + \frac{304864617512251916247729831016342098237479425812537065}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{7} + \frac{1829187771521965916641632737183121710086765720270244468}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{6} + \frac{319403007833574673748528074945795585397951419122377847964507490}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{5} + \frac{2235821113978760268433578127141401430451352718292730371867026697}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{4} + \frac{333203682903146730558065235574636966635538341815445337499561954699373772}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{3} + \frac{2665629509538611063212003233709913505455531850438644317107505178847786289}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a^{2} - \frac{3125460673068592890932375323716656086287599009637867638970853509277144318}{55031470524962644292569312463775207590134001851146703309340348808987505786081} a - \frac{1139647302644498758943275693341092651189561733370536604058621086957253127}{55031470524962644292569312463775207590134001851146703309340348808987505786081}$, $\frac{1}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{20} - \frac{10}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{19} - \frac{1378592948}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{18} + \frac{12407336817}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{17} + \frac{855685969990634018}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{16} - \frac{6845488041158041288}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{15} - \frac{245669827930968752282957512}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{14} + \frac{1719688915312822970561819066}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{13} + \frac{75704885091334285606534154721724914}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{12} - \frac{454229332903961924175613074353483216}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{11} + \frac{15302273637118975555483619570109623989810656}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{10} - \frac{76511364021825951838513828864479181240178548}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{9} + \frac{22198709776229347954022504497239733615041400515825113}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{8} - \frac{88794838645849212681657039163034278343290238293474860}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{7} + \frac{21123496430608778944373579288859686449824462370618866630854457}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{6} - \frac{63370488981044401893996217375925684282374303940755275431190702}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{5} + \frac{20699811271800363471336111758450114541057697425123037830073273841334863}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{4} - \frac{41399622437983245411192198627374556038781931291185772546186858464651459}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{3} + \frac{20251558092111955069593589572919292408321402081539067547827817520486459973652692}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{2} - \frac{20251558071412143861163715016031453658945367005882878561781930034591310030422054}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a + \frac{210456814638400174290736947084132694404983465734617594999557330169982291363697404}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709}$, $\frac{1}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{21} - \frac{1378593048}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{19} - \frac{1378592663}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{18} + \frac{855686094064002188}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{17} + \frac{1711371658748298892}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{16} - \frac{245669896385849163863370392}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{15} - \frac{737009363996864552267756054}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{14} + \frac{75704902288223438734763860339915574}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{13} + \frac{302819518009380931889728472863765924}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{12} + \frac{15302269094825646515864377813978880454978496}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{11} + \frac{76511372349363803716322366836617058657928012}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{10} + \frac{22198709011115707735762986112101444970249588114039633}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{9} + \frac{133192259116444266858568005809363057807123766864776270}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{8} + \frac{21123495542660392485881452472289294819481678937716483696105857}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{7} + \frac{147864475325043387549739575512671180215870319765433390877353868}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{6} + \frac{20699810638095473660892092818487940781800854601379998422520519529427843}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{5} + \frac{165598490280020389302168918957126589371795042960044605754545879948697171}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{4} + \frac{20251557678115730689761135460997306134575841693719754635970092058617875327138102}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{3} + \frac{182264022849707406834772180713161470424268653809507796916496245170273289706104866}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a^{2} + \frac{7941233924278735679099796923818157815529795675788809381738029824069191059476864}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709} a + \frac{2104568146384001742907369470841326944049834657346175949995573301699822913636974040}{215371140428559418943752457012243229813138110099572977250139328959970142150541723520709}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T51:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 40874803200
The 376 conjugacy class representatives for t22n51 are not computed
Character table for t22n51 is not computed

Intermediate fields

11.11.48706494267293.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 sibling: data not computed
Degree 44 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.8.0.1}{8} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
421Data not computed
3913599589Data not computed
115692385433Data not computed