Properties

Label 22.22.1986168044...2256.1
Degree $22$
Signature $[22, 0]$
Discriminant $2^{71}\cdot 3^{21}\cdot 11^{2}\cdot 337^{8}\cdot 1847\cdot 14387\cdot 17401\cdot 310501^{8}$
Root discriminant $92{,}916.24$
Ramified primes $2, 3, 11, 337, 1847, 14387, 17401, 310501$
Class number Not computed
Class group Not computed
Galois group 22T44

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-162477537538472376, 0, 166011843276804404, 0, -32824260622235770, 0, 3053662171928622, 0, -166188568269012, 0, 5798322147168, 0, -135179152602, 0, 2131486062, 0, -22444968, 0, 151074, 0, -587, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 587*x^20 + 151074*x^18 - 22444968*x^16 + 2131486062*x^14 - 135179152602*x^12 + 5798322147168*x^10 - 166188568269012*x^8 + 3053662171928622*x^6 - 32824260622235770*x^4 + 166011843276804404*x^2 - 162477537538472376)
 
gp: K = bnfinit(x^22 - 587*x^20 + 151074*x^18 - 22444968*x^16 + 2131486062*x^14 - 135179152602*x^12 + 5798322147168*x^10 - 166188568269012*x^8 + 3053662171928622*x^6 - 32824260622235770*x^4 + 166011843276804404*x^2 - 162477537538472376, 1)
 

Normalized defining polynomial

\( x^{22} - 587 x^{20} + 151074 x^{18} - 22444968 x^{16} + 2131486062 x^{14} - 135179152602 x^{12} + 5798322147168 x^{10} - 166188568269012 x^{8} + 3053662171928622 x^{6} - 32824260622235770 x^{4} + 166011843276804404 x^{2} - 162477537538472376 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(19861680445136995514566695021635141826242824408734364859334714399782912213082611059290887677605650017346912256=2^{71}\cdot 3^{21}\cdot 11^{2}\cdot 337^{8}\cdot 1847\cdot 14387\cdot 17401\cdot 310501^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $92{,}916.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11, 337, 1847, 14387, 17401, 310501$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{16}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491815}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{1004302154534722920052499277118458421820145578721665837945}{2631241845780385456169352115112477349569393745428891518478} a^{16} - \frac{643466077911965133265555533337835067610060492455760582310}{14471830151792120008931436633118625422631665599858903351629} a^{14} - \frac{13189478217331914001926526008336601736971377781913671720483}{28943660303584240017862873266237250845263331199717806703258} a^{12} - \frac{9034809236354090268361778797247574508083006775253021989045}{28943660303584240017862873266237250845263331199717806703258} a^{10} - \frac{6166493277942033869131381004148231145943654093755503664616}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{3878884881889995777978015953846472365928244135611399569258}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{6921328388706364494241559168137153061833951129125846707443}{28943660303584240017862873266237250845263331199717806703258} a^{4} + \frac{8917781021277213759491527194457318510806762010851346459499}{28943660303584240017862873266237250845263331199717806703258} a^{2} + \frac{310093089188068675826151051109133234209248850196927082794}{1315620922890192728084676057556238674784696872714445759239}$, $\frac{1}{636760526678853280392983211857219518595793286393791747471676} a^{21} + \frac{54936878270272717030301338338350979254243090422678894914701}{636760526678853280392983211857219518595793286393791747471676} a^{19} + \frac{4258181537026047992286204953106496277318641912136117199011}{28943660303584240017862873266237250845263331199717806703258} a^{17} - \frac{73002616836872565177922738698930962180768388491750277340455}{159190131669713320098245802964304879648948321598447936867919} a^{15} - \frac{13189478217331914001926526008336601736971377781913671720483}{318380263339426640196491605928609759297896643196895873735838} a^{13} - \frac{66922129843522570304087525329722076198609669174688635395561}{318380263339426640196491605928609759297896643196895873735838} a^{11} + \frac{37248997177434326157662928895207645121951342705821206390271}{159190131669713320098245802964304879648948321598447936867919} a^{9} - \frac{25064775421694244239884857312390778479335087064106407134000}{159190131669713320098245802964304879648948321598447936867919} a^{7} - \frac{151639629906627564583555925499323407288150607127714880223733}{318380263339426640196491605928609759297896643196895873735838} a^{5} - \frac{106856860193059746311959965870491684870246562788019880353533}{318380263339426640196491605928609759297896643196895873735838} a^{3} + \frac{4256955857858646860080179223777849258563339468340264360511}{14471830151792120008931436633118625422631665599858903351629} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T44:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 16220160
The 104 conjugacy class representatives for t22n44 are not computed
Character table for t22n44 is not computed

Intermediate fields

11.11.118769262421915560193703211428553337469927424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 sibling: data not computed
Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ $22$ R ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ $22$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.9.10.1$x^{9} + 3 x^{2} + 3$$9$$1$$10$$C_3^2:Q_8$$[5/4, 5/4]_{4}^{2}$
3.9.10.1$x^{9} + 3 x^{2} + 3$$9$$1$$10$$C_3^2:Q_8$$[5/4, 5/4]_{4}^{2}$
$11$11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.8.0.1$x^{8} + x^{2} - 2 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
11.8.0.1$x^{8} + x^{2} - 2 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
337Data not computed
1847Data not computed
14387Data not computed
17401Data not computed
310501Data not computed