Normalized defining polynomial
\( x^{22} - 11 x^{21} + 363 x^{19} - 924 x^{18} - 3795 x^{17} + 18029 x^{16} + 3872 x^{15} - 133661 x^{14} + 177265 x^{13} + 335500 x^{12} - 1066395 x^{11} + 478390 x^{10} + 1617539 x^{9} - 2643443 x^{8} + 1103938 x^{7} + 829103 x^{6} - 1076977 x^{5} + 385000 x^{4} - 737 x^{3} - 27214 x^{2} + 4235 x - 77 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1856564799974488125951035818931423019008=2^{20}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{32126130364399796864514964010959} a^{21} - \frac{9570595158263370783031472720156}{32126130364399796864514964010959} a^{20} + \frac{15570256890989220918160643776079}{32126130364399796864514964010959} a^{19} - \frac{1847831915804910948970587482040}{32126130364399796864514964010959} a^{18} + \frac{7307132583471068154399454341277}{32126130364399796864514964010959} a^{17} + \frac{8946517579520250916093162292368}{32126130364399796864514964010959} a^{16} + \frac{6632106961737088288040364133850}{32126130364399796864514964010959} a^{15} + \frac{8579092833147911411506691090246}{32126130364399796864514964010959} a^{14} + \frac{15438772200653583376220752914235}{32126130364399796864514964010959} a^{13} - \frac{14448450664487152886786671149898}{32126130364399796864514964010959} a^{12} + \frac{4164489764901059602615939171107}{32126130364399796864514964010959} a^{11} + \frac{2127225523969160502385599866401}{32126130364399796864514964010959} a^{10} - \frac{6381131628460118550373387018393}{32126130364399796864514964010959} a^{9} + \frac{2779809921578899303139106738388}{32126130364399796864514964010959} a^{8} + \frac{6291730801561064154782500013018}{32126130364399796864514964010959} a^{7} + \frac{1691825317224357093197568383561}{32126130364399796864514964010959} a^{6} - \frac{5162551117921510272694636335829}{32126130364399796864514964010959} a^{5} + \frac{7379938475916965711237551043426}{32126130364399796864514964010959} a^{4} - \frac{13801400245576044534302567151267}{32126130364399796864514964010959} a^{3} + \frac{4037611365782535477458189288459}{32126130364399796864514964010959} a^{2} - \frac{7980711490640184820343191986326}{32126130364399796864514964010959} a - \frac{8855328108349626312796838559506}{32126130364399796864514964010959}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8449061390020 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 110 |
| The 11 conjugacy class representatives for $F_{11}$ |
| Character table for $F_{11}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 11 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||