Normalized defining polynomial
\( x^{22} - 89 x^{20} + 3150 x^{18} - 57580 x^{16} + 598262 x^{14} - 3693531 x^{12} + 13804717 x^{10} - 31161425 x^{8} + 41221734 x^{6} - 29534937 x^{4} + 9303930 x^{2} - 492561 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1763538487452830226245963748900352261772304973824=2^{22}\cdot 3^{11}\cdot 2027^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 2027$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{3} a^{7} - \frac{2}{9} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{12} + \frac{4}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} + \frac{4}{9} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{8}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{9}$, $\frac{1}{81} a^{16} - \frac{1}{81} a^{14} - \frac{2}{81} a^{12} - \frac{8}{81} a^{10} + \frac{11}{81} a^{8} - \frac{38}{81} a^{6} + \frac{1}{3} a^{4} + \frac{10}{27} a^{2} - \frac{1}{3}$, $\frac{1}{81} a^{17} - \frac{1}{81} a^{15} - \frac{2}{81} a^{13} + \frac{1}{81} a^{11} + \frac{11}{81} a^{9} + \frac{16}{81} a^{7} + \frac{1}{9} a^{5} - \frac{8}{27} a^{3}$, $\frac{1}{567} a^{18} + \frac{2}{567} a^{16} + \frac{13}{567} a^{14} - \frac{2}{81} a^{12} - \frac{13}{567} a^{10} + \frac{40}{567} a^{8} - \frac{11}{189} a^{6} + \frac{19}{189} a^{4} - \frac{11}{63} a^{2} + \frac{2}{7}$, $\frac{1}{567} a^{19} + \frac{2}{567} a^{17} + \frac{13}{567} a^{15} - \frac{2}{81} a^{13} - \frac{13}{567} a^{11} + \frac{40}{567} a^{9} - \frac{11}{189} a^{7} + \frac{19}{189} a^{5} - \frac{11}{63} a^{3} + \frac{2}{7} a$, $\frac{1}{2468148341199445901338209} a^{20} + \frac{1935328448358169692748}{2468148341199445901338209} a^{18} - \frac{530065163163606238058}{274238704577716211259801} a^{16} - \frac{32287148987573507471845}{2468148341199445901338209} a^{14} + \frac{101421617923521900369296}{2468148341199445901338209} a^{12} + \frac{14001673947239039606099}{117530873390449804825629} a^{10} + \frac{381274547157499310687398}{2468148341199445901338209} a^{8} + \frac{299902804993504746968086}{2468148341199445901338209} a^{6} + \frac{56337965533396160493290}{822716113733148633779403} a^{4} + \frac{333976584966379577689609}{822716113733148633779403} a^{2} + \frac{38147911145270902284419}{91412901525905403753267}$, $\frac{1}{7404445023598337704014627} a^{21} - \frac{2417666862399230485979}{7404445023598337704014627} a^{19} - \frac{4883060473921006416785}{822716113733148633779403} a^{17} - \frac{47520546489976302829144}{1057777860514048243430661} a^{15} + \frac{223305486624729105373652}{7404445023598337704014627} a^{13} - \frac{76108094799622729906387}{2468148341199445901338209} a^{11} - \frac{402264608778832721483462}{7404445023598337704014627} a^{9} + \frac{1601448402909967400407459}{7404445023598337704014627} a^{7} - \frac{574846354526426865422125}{2468148341199445901338209} a^{5} - \frac{649800355264792862702693}{2468148341199445901338209} a^{3} + \frac{19130543997419100888059}{39176957796816601608543} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 498156214952000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.8315244373648414401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 2027 | Data not computed | ||||||