Normalized defining polynomial
\( x^{22} - 44 x^{20} + 816 x^{18} - 8336 x^{16} + 51512 x^{14} - 199186 x^{12} + 481348 x^{10} - 702109 x^{8} + 569938 x^{6} - 220847 x^{4} + 35007 x^{2} - 1297 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17471883970840462300304775614373553=1297^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{14} + \frac{1}{10} a^{12} + \frac{2}{5} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{10} a^{6} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{10} a^{17} + \frac{1}{5} a^{15} + \frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{10} a^{7} + \frac{2}{5} a^{5} - \frac{3}{10} a^{3} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{2050} a^{18} - \frac{1}{82} a^{16} + \frac{7}{2050} a^{14} + \frac{147}{2050} a^{12} - \frac{154}{1025} a^{10} - \frac{961}{2050} a^{8} - \frac{1}{2} a^{7} + \frac{161}{2050} a^{6} - \frac{1}{2} a^{5} - \frac{438}{1025} a^{4} - \frac{68}{205} a^{2} - \frac{633}{2050}$, $\frac{1}{2050} a^{19} - \frac{1}{82} a^{17} + \frac{7}{2050} a^{15} + \frac{147}{2050} a^{13} - \frac{154}{1025} a^{11} - \frac{961}{2050} a^{9} - \frac{1}{2} a^{8} + \frac{161}{2050} a^{7} - \frac{1}{2} a^{6} - \frac{438}{1025} a^{5} - \frac{68}{205} a^{3} - \frac{633}{2050} a$, $\frac{1}{18511120616750} a^{20} + \frac{2927096123}{18511120616750} a^{18} - \frac{652472479893}{18511120616750} a^{16} + \frac{1203748839829}{9255560308375} a^{14} - \frac{1127631712051}{9255560308375} a^{12} - \frac{1256632259119}{3702224123350} a^{10} - \frac{1}{2} a^{9} + \frac{538652610483}{18511120616750} a^{8} - \frac{3268362941224}{9255560308375} a^{6} - \frac{1}{2} a^{5} + \frac{397907936247}{18511120616750} a^{4} - \frac{1}{2} a^{3} + \frac{9082411779777}{18511120616750} a^{2} - \frac{1295366620242}{9255560308375}$, $\frac{1}{18511120616750} a^{21} + \frac{2927096123}{18511120616750} a^{19} - \frac{652472479893}{18511120616750} a^{17} + \frac{1203748839829}{9255560308375} a^{15} - \frac{1127631712051}{9255560308375} a^{13} + \frac{297239901278}{1851112061675} a^{11} - \frac{1}{2} a^{10} + \frac{538652610483}{18511120616750} a^{9} - \frac{3268362941224}{9255560308375} a^{7} - \frac{1}{2} a^{6} + \frac{397907936247}{18511120616750} a^{5} + \frac{9082411779777}{18511120616750} a^{3} - \frac{1}{2} a^{2} + \frac{6664827067891}{18511120616750} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10757085477.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22 |
| The 7 conjugacy class representatives for $D_{11}$ |
| Character table for $D_{11}$ |
Intermediate fields
| \(\Q(\sqrt{1297}) \), 11.11.3670285774226257.1 x11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 11 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||