Normalized defining polynomial
\( x^{22} - 140 x^{20} + 8475 x^{18} - 291035 x^{16} + 6250874 x^{14} - 87255611 x^{12} + 795482411 x^{10} - 4618766140 x^{8} + 15964116759 x^{6} - 28133091175 x^{4} + 16687617633 x^{2} - 3015217921 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(170364212909807025886845565709641708504367497216=2^{22}\cdot 43^{2}\cdot 1277^{2}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 1277, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{12} - \frac{2}{5} a^{10} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{13} - \frac{2}{5} a^{11} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3}$, $\frac{1}{145} a^{18} - \frac{3}{145} a^{16} - \frac{14}{145} a^{14} - \frac{63}{145} a^{12} + \frac{14}{145} a^{10} - \frac{37}{145} a^{8} + \frac{71}{145} a^{6} + \frac{11}{29} a^{4} + \frac{42}{145} a^{2} - \frac{63}{145}$, $\frac{1}{145} a^{19} - \frac{3}{145} a^{17} - \frac{14}{145} a^{15} - \frac{63}{145} a^{13} + \frac{14}{145} a^{11} - \frac{37}{145} a^{9} + \frac{71}{145} a^{7} + \frac{11}{29} a^{5} + \frac{42}{145} a^{3} - \frac{63}{145} a$, $\frac{1}{200320171892360966196615611496891305} a^{20} - \frac{600360830078994695200234890659522}{200320171892360966196615611496891305} a^{18} + \frac{599803707855789366743146089543986}{40064034378472193239323122299378261} a^{16} + \frac{10723173859995098185038821076068138}{200320171892360966196615611496891305} a^{14} - \frac{11605948360326386060716383985092768}{40064034378472193239323122299378261} a^{12} - \frac{23532394361508218305762335634698042}{200320171892360966196615611496891305} a^{10} + \frac{64115426714175859901771235739049119}{200320171892360966196615611496891305} a^{8} - \frac{99263586357418190268864833341466797}{200320171892360966196615611496891305} a^{6} + \frac{5709198860535277107339000090823140}{40064034378472193239323122299378261} a^{4} - \frac{4055019842137007121127732607478534}{40064034378472193239323122299378261} a^{2} + \frac{191986782210083332059105335072}{3648088213515706619741319799255}$, $\frac{1}{200320171892360966196615611496891305} a^{21} - \frac{600360830078994695200234890659522}{200320171892360966196615611496891305} a^{19} + \frac{599803707855789366743146089543986}{40064034378472193239323122299378261} a^{17} + \frac{10723173859995098185038821076068138}{200320171892360966196615611496891305} a^{15} - \frac{11605948360326386060716383985092768}{40064034378472193239323122299378261} a^{13} - \frac{23532394361508218305762335634698042}{200320171892360966196615611496891305} a^{11} + \frac{64115426714175859901771235739049119}{200320171892360966196615611496891305} a^{9} - \frac{99263586357418190268864833341466797}{200320171892360966196615611496891305} a^{7} + \frac{5709198860535277107339000090823140}{40064034378472193239323122299378261} a^{5} - \frac{4055019842137007121127732607478534}{40064034378472193239323122299378261} a^{3} + \frac{191986782210083332059105335072}{3648088213515706619741319799255} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49537806486500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1277 | Data not computed | ||||||
| 1297 | Data not computed | ||||||