Normalized defining polynomial
\( x^{22} - x^{21} - 34 x^{20} + 25 x^{19} + 435 x^{18} - 199 x^{17} - 2682 x^{16} + 491 x^{15} + 8835 x^{14} + 378 x^{13} - 16217 x^{12} - 3399 x^{11} + 16648 x^{10} + 5347 x^{9} - 9307 x^{8} - 3533 x^{7} + 2728 x^{6} + 1048 x^{5} - 402 x^{4} - 126 x^{3} + 31 x^{2} + 5 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(147861244626519891422962699267578125=5^{11}\cdot 55029067682009^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 55029067682009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{8050295720193493799} a^{21} + \frac{1682386493903915660}{8050295720193493799} a^{20} + \frac{2028828168194941696}{8050295720193493799} a^{19} + \frac{3531625238481394667}{8050295720193493799} a^{18} - \frac{361962629852261712}{8050295720193493799} a^{17} - \frac{2539069664680220411}{8050295720193493799} a^{16} + \frac{1026516189107871061}{8050295720193493799} a^{15} + \frac{2709000362149847079}{8050295720193493799} a^{14} - \frac{596459041536382312}{8050295720193493799} a^{13} + \frac{1601554111015961375}{8050295720193493799} a^{12} + \frac{3245431849379078147}{8050295720193493799} a^{11} - \frac{629972969538100796}{8050295720193493799} a^{10} + \frac{3009883360880741732}{8050295720193493799} a^{9} - \frac{2689202427751411545}{8050295720193493799} a^{8} - \frac{2456757709921666718}{8050295720193493799} a^{7} + \frac{2346925194982333096}{8050295720193493799} a^{6} + \frac{1787272726581748534}{8050295720193493799} a^{5} + \frac{3929164802240844235}{8050295720193493799} a^{4} + \frac{3875140283713926637}{8050295720193493799} a^{3} + \frac{996111929198540209}{8050295720193493799} a^{2} - \frac{151017421680822803}{8050295720193493799} a - \frac{2614092534560446269}{8050295720193493799}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26137547532.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.11.55029067682009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 55029067682009 | Data not computed | ||||||