Normalized defining polynomial
\( x^{22} - 110 x^{20} + 4961 x^{18} - 120010 x^{16} + 1717628 x^{14} - 15154920 x^{12} - 113976 x^{11} + 83059603 x^{10} + 2713744 x^{9} - 276604790 x^{8} - 23295712 x^{7} + 527297551 x^{6} + 84739424 x^{5} - 505302050 x^{4} - 110247720 x^{3} + 171802697 x^{2} + 14699696 x - 16203074 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1443504362796122527044991464707560867604392312832=2^{43}\cdot 11^{22}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $154.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} - \frac{8}{17} a^{12} - \frac{3}{17} a^{10} - \frac{7}{17} a^{8} - \frac{1}{17} a^{6} + \frac{2}{17} a^{4} - \frac{8}{17} a^{3}$, $\frac{1}{17} a^{15} - \frac{8}{17} a^{13} - \frac{3}{17} a^{11} - \frac{7}{17} a^{9} - \frac{1}{17} a^{7} + \frac{2}{17} a^{5} - \frac{8}{17} a^{4}$, $\frac{1}{119} a^{16} + \frac{2}{119} a^{15} + \frac{2}{119} a^{14} - \frac{16}{119} a^{13} - \frac{7}{17} a^{12} + \frac{45}{119} a^{11} + \frac{48}{119} a^{10} + \frac{3}{119} a^{9} - \frac{3}{119} a^{8} - \frac{36}{119} a^{7} - \frac{8}{119} a^{6} - \frac{4}{119} a^{5} - \frac{30}{119} a^{4} + \frac{8}{17} a^{3} + \frac{2}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{2023} a^{17} + \frac{26}{2023} a^{15} - \frac{2}{119} a^{14} + \frac{116}{2023} a^{13} + \frac{50}{119} a^{12} - \frac{69}{289} a^{11} - \frac{45}{119} a^{10} - \frac{562}{2023} a^{9} - \frac{3}{119} a^{8} + \frac{393}{2023} a^{7} + \frac{502}{2023} a^{6} + \frac{58}{119} a^{5} - \frac{15}{119} a^{4} + \frac{16}{119} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{2023} a^{18} - \frac{8}{2023} a^{16} + \frac{1}{119} a^{15} + \frac{48}{2023} a^{14} + \frac{26}{119} a^{13} - \frac{120}{289} a^{12} - \frac{37}{119} a^{11} - \frac{171}{2023} a^{10} - \frac{58}{119} a^{9} + \frac{495}{2023} a^{8} - \frac{416}{2023} a^{7} - \frac{45}{119} a^{6} + \frac{1}{17} a^{5} + \frac{20}{119} a^{4} - \frac{10}{119} a^{3} - \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{2023} a^{19} - \frac{16}{2023} a^{15} + \frac{1}{119} a^{14} + \frac{241}{2023} a^{13} - \frac{8}{119} a^{12} - \frac{40}{2023} a^{11} + \frac{31}{119} a^{10} - \frac{363}{2023} a^{9} + \frac{60}{2023} a^{8} - \frac{817}{2023} a^{7} + \frac{344}{2023} a^{6} - \frac{16}{119} a^{5} - \frac{2}{119} a^{4} - \frac{25}{119} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{34391} a^{20} - \frac{8}{34391} a^{18} + \frac{99}{34391} a^{16} + \frac{2}{119} a^{15} + \frac{197}{34391} a^{14} + \frac{52}{119} a^{13} - \frac{11884}{34391} a^{12} + \frac{4}{17} a^{11} - \frac{5353}{34391} a^{10} - \frac{110}{34391} a^{9} - \frac{864}{2023} a^{8} - \frac{879}{2023} a^{7} - \frac{1}{7} a^{6} - \frac{5}{17} a^{5} + \frac{46}{119} a^{4} + \frac{1}{17} a^{3} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{5533730993696888654107649476312755641482555887529} a^{21} + \frac{9242963909003598690387723588705525325719626}{790532999099555522015378496616107948783222269647} a^{20} - \frac{907753443679872265471892909148477618993529515}{5533730993696888654107649476312755641482555887529} a^{19} - \frac{91095819085548861645628982999392682953989153}{790532999099555522015378496616107948783222269647} a^{18} - \frac{1222075846601539130862238764699123879351010855}{5533730993696888654107649476312755641482555887529} a^{17} + \frac{15573603515909465402262572768043493756487375551}{5533730993696888654107649476312755641482555887529} a^{16} + \frac{68640047072629024279086653581187314097449293389}{5533730993696888654107649476312755641482555887529} a^{15} - \frac{228447067791188991892451295999396603670860721}{790532999099555522015378496616107948783222269647} a^{14} + \frac{1319627721082092732730691876905470946030975874551}{5533730993696888654107649476312755641482555887529} a^{13} + \frac{1743352635032145652325511089532038400808008227328}{5533730993696888654107649476312755641482555887529} a^{12} - \frac{1169778028110828446959057186837418843138201248300}{5533730993696888654107649476312755641482555887529} a^{11} - \frac{1646681375971551517313115197039512043321936918850}{5533730993696888654107649476312755641482555887529} a^{10} - \frac{309283402698446025413439889912285763717677688503}{5533730993696888654107649476312755641482555887529} a^{9} - \frac{17355939218936734795816605549301194635069424327}{325513587864522862006332322136044449498973875737} a^{8} - \frac{22850519515649073391937992053038299048032211081}{46501941123503266000904617448006349928424839391} a^{7} + \frac{143862601159610887644817552604785440613622919621}{325513587864522862006332322136044449498973875737} a^{6} + \frac{6547313630506766527858585029389041276383446855}{19147858109677815412137195419767320558763169161} a^{5} + \frac{1754923660823868383271209564933429270143109871}{19147858109677815412137195419767320558763169161} a^{4} - \frac{3836230263650759595927003091512977245843931652}{19147858109677815412137195419767320558763169161} a^{3} + \frac{326241880605755352311975174481772255652285082}{1126344594686930318361011495280430621103715833} a^{2} - \frac{75465088019317507740961641027430904000961729}{1126344594686930318361011495280430621103715833} a - \frac{279532511963151085032584625375701906022611950}{1126344594686930318361011495280430621103715833}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 372931478202000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2420 |
| The 29 conjugacy class representatives for t22n15 |
| Character table for t22n15 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.10.0.1 | $x^{10} - x + 7$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 17.11.10.1 | $x^{11} - 17$ | $11$ | $1$ | $10$ | $F_{11}$ | $[\ ]_{11}^{10}$ | |