Properties

Label 22.22.1423295463...6272.1
Degree $22$
Signature $[22, 0]$
Discriminant $2^{22}\cdot 7^{11}\cdot 23^{20}$
Root discriminant $91.52$
Ramified primes $2, 7, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-38604719, -25736464, 193879860, 109236440, -366604062, -168333340, 342485752, 124307164, -176910567, -49578134, 53939118, 11435962, -10109060, -1584074, 1188426, 133046, -87467, -6608, 3899, 178, -96, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 96*x^20 + 178*x^19 + 3899*x^18 - 6608*x^17 - 87467*x^16 + 133046*x^15 + 1188426*x^14 - 1584074*x^13 - 10109060*x^12 + 11435962*x^11 + 53939118*x^10 - 49578134*x^9 - 176910567*x^8 + 124307164*x^7 + 342485752*x^6 - 168333340*x^5 - 366604062*x^4 + 109236440*x^3 + 193879860*x^2 - 25736464*x - 38604719)
 
gp: K = bnfinit(x^22 - 2*x^21 - 96*x^20 + 178*x^19 + 3899*x^18 - 6608*x^17 - 87467*x^16 + 133046*x^15 + 1188426*x^14 - 1584074*x^13 - 10109060*x^12 + 11435962*x^11 + 53939118*x^10 - 49578134*x^9 - 176910567*x^8 + 124307164*x^7 + 342485752*x^6 - 168333340*x^5 - 366604062*x^4 + 109236440*x^3 + 193879860*x^2 - 25736464*x - 38604719, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 96 x^{20} + 178 x^{19} + 3899 x^{18} - 6608 x^{17} - 87467 x^{16} + 133046 x^{15} + 1188426 x^{14} - 1584074 x^{13} - 10109060 x^{12} + 11435962 x^{11} + 53939118 x^{10} - 49578134 x^{9} - 176910567 x^{8} + 124307164 x^{7} + 342485752 x^{6} - 168333340 x^{5} - 366604062 x^{4} + 109236440 x^{3} + 193879860 x^{2} - 25736464 x - 38604719 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14232954634830452964011747236817552143286272=2^{22}\cdot 7^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $91.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(644=2^{2}\cdot 7\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{644}(1,·)$, $\chi_{644}(587,·)$, $\chi_{644}(197,·)$, $\chi_{644}(449,·)$, $\chi_{644}(393,·)$, $\chi_{644}(139,·)$, $\chi_{644}(141,·)$, $\chi_{644}(335,·)$, $\chi_{644}(531,·)$, $\chi_{644}(533,·)$, $\chi_{644}(279,·)$, $\chi_{644}(27,·)$, $\chi_{644}(29,·)$, $\chi_{644}(223,·)$, $\chi_{644}(225,·)$, $\chi_{644}(167,·)$, $\chi_{644}(169,·)$, $\chi_{644}(363,·)$, $\chi_{644}(561,·)$, $\chi_{644}(307,·)$, $\chi_{644}(55,·)$, $\chi_{644}(85,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{16}{47} a^{19} + \frac{21}{47} a^{18} - \frac{18}{47} a^{17} - \frac{16}{47} a^{16} - \frac{11}{47} a^{15} - \frac{10}{47} a^{13} - \frac{8}{47} a^{12} - \frac{18}{47} a^{11} - \frac{8}{47} a^{10} - \frac{11}{47} a^{9} - \frac{14}{47} a^{8} - \frac{12}{47} a^{7} - \frac{13}{47} a^{6} - \frac{2}{47} a^{5} + \frac{20}{47} a^{4} - \frac{23}{47} a^{3} + \frac{12}{47} a$, $\frac{1}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{21} - \frac{188942093996520254299964123729844262662711019555291101847908769074888500}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{20} - \frac{963461149491892907750855601846681563345942308837081020002160912870997592}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{19} + \frac{15437252604335860365159011081199311848675557277693732742027057145822152780}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{18} - \frac{10509291766506788762728682474476286723954269157587604850874763850362041125}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{17} - \frac{16913393986677229516897030039937856387364656659805486666827513252660815320}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{16} + \frac{11080090772555870133157863444450595698944382773631174006821484277487197217}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{15} - \frac{10603853896860192095405489511895332145139573153089398690430321879385837257}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{14} + \frac{18179981593193306605570800149255991122234030600461505310705674400519460955}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{13} + \frac{7377446962153355713150192515808063793656817463121292183686179498505167284}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{12} + \frac{5773571825865208654160144067954168127047133764242841784198994663777824262}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{11} - \frac{399102950627993957609706931992021824496060741115520442288365342659326256}{839883856261377664639328021497872104239383118233522736172223118954490819} a^{10} - \frac{804111443415785296006522763260962025747074117210906622647289256427070011}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{9} - \frac{1964919661376334240206971704893608136221294541317255014139431294299279695}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{8} - \frac{10912212391742207900422776643342565224580634721817599563509641983374908962}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{7} - \frac{440668907743168548060131330212056334354632640523322042806247377894686836}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{6} - \frac{10013898009507110686350467977499234808754230513202559925801976257546061208}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{5} + \frac{14415794145268654424040409015261097910395619065830092626880837038192261912}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{4} + \frac{8806417799771849189195842499269190935974565435644058310193294436796768530}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{3} - \frac{18416605957846594471657725867703124600093865708834024033910615602632906932}{39474541244284750238048417010399988899251006556975568600094486590861068493} a^{2} + \frac{2913823239245113604742527142306254735167213312235417749840058195172611579}{39474541244284750238048417010399988899251006556975568600094486590861068493} a - \frac{56256038854223441175754342715106654690790101918551632796609997818116259}{839883856261377664639328021497872104239383118233522736172223118954490819}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 393171463879000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ $22$ R $22$ $22$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
7Data not computed
23Data not computed