Properties

Label 22.22.1275118148...8288.1
Degree $22$
Signature $[22, 0]$
Discriminant $2^{22}\cdot 3^{11}\cdot 23^{20}$
Root discriminant $59.91$
Ramified primes $2, 3, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -48, 132, 3640, -6974, -68812, 115208, 319292, -393631, -489902, 471886, 324714, -259836, -108194, 75178, 19510, -12143, -1928, 1099, 98, -52, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 52*x^20 + 98*x^19 + 1099*x^18 - 1928*x^17 - 12143*x^16 + 19510*x^15 + 75178*x^14 - 108194*x^13 - 259836*x^12 + 324714*x^11 + 471886*x^10 - 489902*x^9 - 393631*x^8 + 319292*x^7 + 115208*x^6 - 68812*x^5 - 6974*x^4 + 3640*x^3 + 132*x^2 - 48*x + 1)
 
gp: K = bnfinit(x^22 - 2*x^21 - 52*x^20 + 98*x^19 + 1099*x^18 - 1928*x^17 - 12143*x^16 + 19510*x^15 + 75178*x^14 - 108194*x^13 - 259836*x^12 + 324714*x^11 + 471886*x^10 - 489902*x^9 - 393631*x^8 + 319292*x^7 + 115208*x^6 - 68812*x^5 - 6974*x^4 + 3640*x^3 + 132*x^2 - 48*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 52 x^{20} + 98 x^{19} + 1099 x^{18} - 1928 x^{17} - 12143 x^{16} + 19510 x^{15} + 75178 x^{14} - 108194 x^{13} - 259836 x^{12} + 324714 x^{11} + 471886 x^{10} - 489902 x^{9} - 393631 x^{8} + 319292 x^{7} + 115208 x^{6} - 68812 x^{5} - 6974 x^{4} + 3640 x^{3} + 132 x^{2} - 48 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[22, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1275118148086621135238339811277472268288=2^{22}\cdot 3^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(276=2^{2}\cdot 3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{276}(1,·)$, $\chi_{276}(131,·)$, $\chi_{276}(133,·)$, $\chi_{276}(193,·)$, $\chi_{276}(265,·)$, $\chi_{276}(119,·)$, $\chi_{276}(13,·)$, $\chi_{276}(85,·)$, $\chi_{276}(215,·)$, $\chi_{276}(25,·)$, $\chi_{276}(239,·)$, $\chi_{276}(95,·)$, $\chi_{276}(35,·)$, $\chi_{276}(167,·)$, $\chi_{276}(169,·)$, $\chi_{276}(71,·)$, $\chi_{276}(47,·)$, $\chi_{276}(49,·)$, $\chi_{276}(179,·)$, $\chi_{276}(73,·)$, $\chi_{276}(121,·)$, $\chi_{276}(59,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{5}{47} a^{19} + \frac{10}{47} a^{18} + \frac{21}{47} a^{17} + \frac{12}{47} a^{16} - \frac{8}{47} a^{15} + \frac{16}{47} a^{14} - \frac{5}{47} a^{13} - \frac{1}{47} a^{12} - \frac{1}{47} a^{11} - \frac{7}{47} a^{10} + \frac{9}{47} a^{9} + \frac{21}{47} a^{8} - \frac{7}{47} a^{7} - \frac{5}{47} a^{6} - \frac{15}{47} a^{5} + \frac{6}{47} a^{4} + \frac{9}{47} a^{3} + \frac{19}{47} a^{2} + \frac{21}{47} a - \frac{7}{47}$, $\frac{1}{2953897106347955368686850438414567250496707} a^{21} - \frac{9207091858560191727488468658594823095867}{2953897106347955368686850438414567250496707} a^{20} - \frac{696829580382850938294680222124393746825490}{2953897106347955368686850438414567250496707} a^{19} - \frac{111724150302599908334697876451682452454127}{2953897106347955368686850438414567250496707} a^{18} + \frac{711290045932281797510842733249699248048090}{2953897106347955368686850438414567250496707} a^{17} + \frac{502654545150724119028192766251629894487802}{2953897106347955368686850438414567250496707} a^{16} + \frac{170843305712267495047747355273885575906168}{2953897106347955368686850438414567250496707} a^{15} - \frac{1393671321004171222394257186239440583637268}{2953897106347955368686850438414567250496707} a^{14} - \frac{306695090858449549175663771067316802796262}{2953897106347955368686850438414567250496707} a^{13} + \frac{1326904887170545199464477589485274214606622}{2953897106347955368686850438414567250496707} a^{12} - \frac{1157846825625746317300055051957235666037513}{2953897106347955368686850438414567250496707} a^{11} - \frac{1236121577699223932338801232787447256211372}{2953897106347955368686850438414567250496707} a^{10} + \frac{1459672642008319973631904096762187460787116}{2953897106347955368686850438414567250496707} a^{9} - \frac{1252155452051414849898191919466690880982148}{2953897106347955368686850438414567250496707} a^{8} + \frac{1361722812608150388300786178105763908378971}{2953897106347955368686850438414567250496707} a^{7} - \frac{448057830800039434043819277918291315746391}{2953897106347955368686850438414567250496707} a^{6} + \frac{1192255179853116622867642724064102848220096}{2953897106347955368686850438414567250496707} a^{5} + \frac{1440143703973747061316224825471806745495177}{2953897106347955368686850438414567250496707} a^{4} + \frac{13462994285891009282556258718856250102487}{62848874603147986567805328476905686180781} a^{3} - \frac{1096171959342201311201676018038401813334769}{2953897106347955368686850438414567250496707} a^{2} - \frac{727148252153634725435192957952335772774233}{2953897106347955368686850438414567250496707} a - \frac{1394636848876808239892341625642816136408916}{2953897106347955368686850438414567250496707}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $21$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3259721489230 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $22$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ $22$ R $22$ $22$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$