Normalized defining polynomial
\( x^{22} - 2 x^{21} - 52 x^{20} + 98 x^{19} + 1099 x^{18} - 1928 x^{17} - 12143 x^{16} + 19510 x^{15} + 75178 x^{14} - 108194 x^{13} - 259836 x^{12} + 324714 x^{11} + 471886 x^{10} - 489902 x^{9} - 393631 x^{8} + 319292 x^{7} + 115208 x^{6} - 68812 x^{5} - 6974 x^{4} + 3640 x^{3} + 132 x^{2} - 48 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1275118148086621135238339811277472268288=2^{22}\cdot 3^{11}\cdot 23^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(276=2^{2}\cdot 3\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{276}(1,·)$, $\chi_{276}(131,·)$, $\chi_{276}(133,·)$, $\chi_{276}(193,·)$, $\chi_{276}(265,·)$, $\chi_{276}(119,·)$, $\chi_{276}(13,·)$, $\chi_{276}(85,·)$, $\chi_{276}(215,·)$, $\chi_{276}(25,·)$, $\chi_{276}(239,·)$, $\chi_{276}(95,·)$, $\chi_{276}(35,·)$, $\chi_{276}(167,·)$, $\chi_{276}(169,·)$, $\chi_{276}(71,·)$, $\chi_{276}(47,·)$, $\chi_{276}(49,·)$, $\chi_{276}(179,·)$, $\chi_{276}(73,·)$, $\chi_{276}(121,·)$, $\chi_{276}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{5}{47} a^{19} + \frac{10}{47} a^{18} + \frac{21}{47} a^{17} + \frac{12}{47} a^{16} - \frac{8}{47} a^{15} + \frac{16}{47} a^{14} - \frac{5}{47} a^{13} - \frac{1}{47} a^{12} - \frac{1}{47} a^{11} - \frac{7}{47} a^{10} + \frac{9}{47} a^{9} + \frac{21}{47} a^{8} - \frac{7}{47} a^{7} - \frac{5}{47} a^{6} - \frac{15}{47} a^{5} + \frac{6}{47} a^{4} + \frac{9}{47} a^{3} + \frac{19}{47} a^{2} + \frac{21}{47} a - \frac{7}{47}$, $\frac{1}{2953897106347955368686850438414567250496707} a^{21} - \frac{9207091858560191727488468658594823095867}{2953897106347955368686850438414567250496707} a^{20} - \frac{696829580382850938294680222124393746825490}{2953897106347955368686850438414567250496707} a^{19} - \frac{111724150302599908334697876451682452454127}{2953897106347955368686850438414567250496707} a^{18} + \frac{711290045932281797510842733249699248048090}{2953897106347955368686850438414567250496707} a^{17} + \frac{502654545150724119028192766251629894487802}{2953897106347955368686850438414567250496707} a^{16} + \frac{170843305712267495047747355273885575906168}{2953897106347955368686850438414567250496707} a^{15} - \frac{1393671321004171222394257186239440583637268}{2953897106347955368686850438414567250496707} a^{14} - \frac{306695090858449549175663771067316802796262}{2953897106347955368686850438414567250496707} a^{13} + \frac{1326904887170545199464477589485274214606622}{2953897106347955368686850438414567250496707} a^{12} - \frac{1157846825625746317300055051957235666037513}{2953897106347955368686850438414567250496707} a^{11} - \frac{1236121577699223932338801232787447256211372}{2953897106347955368686850438414567250496707} a^{10} + \frac{1459672642008319973631904096762187460787116}{2953897106347955368686850438414567250496707} a^{9} - \frac{1252155452051414849898191919466690880982148}{2953897106347955368686850438414567250496707} a^{8} + \frac{1361722812608150388300786178105763908378971}{2953897106347955368686850438414567250496707} a^{7} - \frac{448057830800039434043819277918291315746391}{2953897106347955368686850438414567250496707} a^{6} + \frac{1192255179853116622867642724064102848220096}{2953897106347955368686850438414567250496707} a^{5} + \frac{1440143703973747061316224825471806745495177}{2953897106347955368686850438414567250496707} a^{4} + \frac{13462994285891009282556258718856250102487}{62848874603147986567805328476905686180781} a^{3} - \frac{1096171959342201311201676018038401813334769}{2953897106347955368686850438414567250496707} a^{2} - \frac{727148252153634725435192957952335772774233}{2953897106347955368686850438414567250496707} a - \frac{1394636848876808239892341625642816136408916}{2953897106347955368686850438414567250496707}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3259721489230 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |