Normalized defining polynomial
\( x^{22} - 10 x^{21} - 5 x^{20} + 348 x^{19} - 782 x^{18} - 3756 x^{17} + 14826 x^{16} + 11078 x^{15} - 105193 x^{14} + 51552 x^{13} + 328609 x^{12} - 383636 x^{11} - 385652 x^{10} + 777826 x^{9} - 51957 x^{8} - 501290 x^{7} + 287700 x^{6} - 24976 x^{5} - 17977 x^{4} + 4628 x^{3} - 302 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115714988826933543891025354042178438955008=2^{33}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{18} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{275} a^{19} - \frac{1}{55} a^{17} - \frac{1}{25} a^{16} - \frac{12}{275} a^{15} - \frac{21}{275} a^{14} - \frac{1}{11} a^{13} + \frac{16}{275} a^{12} + \frac{126}{275} a^{11} - \frac{73}{275} a^{10} - \frac{16}{55} a^{9} + \frac{26}{55} a^{8} - \frac{23}{55} a^{7} - \frac{64}{275} a^{6} + \frac{128}{275} a^{5} + \frac{1}{5} a^{4} - \frac{29}{275} a^{3} + \frac{27}{275} a^{2} + \frac{3}{275} a - \frac{21}{275}$, $\frac{1}{191675} a^{20} + \frac{14}{38335} a^{19} + \frac{648}{38335} a^{18} + \frac{16634}{191675} a^{17} - \frac{13322}{191675} a^{16} + \frac{16134}{191675} a^{15} - \frac{1113}{38335} a^{14} - \frac{1294}{191675} a^{13} + \frac{83911}{191675} a^{12} - \frac{82113}{191675} a^{11} - \frac{1522}{38335} a^{10} - \frac{43}{2255} a^{9} - \frac{11766}{38335} a^{8} - \frac{78074}{191675} a^{7} - \frac{36857}{191675} a^{6} - \frac{11958}{38335} a^{5} - \frac{28299}{191675} a^{4} + \frac{25442}{191675} a^{3} - \frac{73127}{191675} a^{2} - \frac{53161}{191675} a - \frac{12141}{38335}$, $\frac{1}{45456592283640092809160225} a^{21} - \frac{36742271334111070308}{45456592283640092809160225} a^{20} - \frac{35703765018476873519974}{45456592283640092809160225} a^{19} + \frac{179833041441085571421}{770450716671865979816275} a^{18} - \frac{18101636189476014646869}{4132417480330917528105475} a^{17} - \frac{4498571879910807361193961}{45456592283640092809160225} a^{16} - \frac{4063789559628531142642829}{45456592283640092809160225} a^{15} + \frac{99542959143133738393363}{1818263691345603712366409} a^{14} + \frac{87568464731687536382003}{45456592283640092809160225} a^{13} + \frac{2092290893552270633547134}{9091318456728018561832045} a^{12} - \frac{3545785418325054241088562}{9091318456728018561832045} a^{11} - \frac{727343325190792904050208}{4132417480330917528105475} a^{10} + \frac{18138639182493666265097}{44347894910868383228449} a^{9} + \frac{5230923503662899649746886}{45456592283640092809160225} a^{8} + \frac{3785486132080606029960662}{9091318456728018561832045} a^{7} + \frac{17670871082356435117306777}{45456592283640092809160225} a^{6} - \frac{3832877568996026938422391}{45456592283640092809160225} a^{5} + \frac{20896569443791990871184594}{45456592283640092809160225} a^{4} - \frac{19697459175380793148029}{45320630392462704695075} a^{3} + \frac{11214102184417388069232447}{45456592283640092809160225} a^{2} - \frac{1101076534835264170383107}{2673917193155299577009425} a + \frac{5590958645482105394879294}{45456592283640092809160225}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40553964823400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 44 |
| The 14 conjugacy class representatives for $D_{22}$ |
| Character table for $D_{22}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1297 | Data not computed | ||||||