Normalized defining polynomial
\( x^{22} - 55 x^{20} + 1177 x^{18} - 12551 x^{16} + 72050 x^{14} - 230406 x^{12} - 776 x^{11} + 417890 x^{10} + 1144 x^{9} - 424182 x^{8} + 4048 x^{7} + 227469 x^{6} - 7920 x^{5} - 56419 x^{4} + 2904 x^{3} + 4389 x^{2} + 88 x - 35 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1086355631527929051985063244906158383693824=2^{32}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{5} + \frac{1}{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{8} + \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{8} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{16} a^{2} - \frac{1}{16}$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{17} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{16} a^{3} + \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{16} a^{20} - \frac{1}{16} a^{16} - \frac{1}{8} a^{12} + \frac{1}{8} a^{8} + \frac{1}{16} a^{4} - \frac{1}{16}$, $\frac{1}{362752781074815285103497507266512} a^{21} + \frac{5260344439514385631294533811793}{181376390537407642551748753633256} a^{20} + \frac{2346114551887882737576390051079}{181376390537407642551748753633256} a^{19} - \frac{267682489220214029215049069109}{22672048817175955318968594204157} a^{18} + \frac{9665057180275298029099780269125}{362752781074815285103497507266512} a^{17} - \frac{7921537302335215226708258661975}{181376390537407642551748753633256} a^{16} - \frac{88960797470681638232165362429}{181376390537407642551748753633256} a^{15} - \frac{1114363696083449194718824702941}{181376390537407642551748753633256} a^{14} - \frac{904852027232531929396712916077}{45344097634351910637937188408314} a^{13} - \frac{9409423998362939962178159156487}{181376390537407642551748753633256} a^{12} - \frac{9422982190836416499059351181663}{181376390537407642551748753633256} a^{11} + \frac{7801629569364155601846077217669}{181376390537407642551748753633256} a^{10} - \frac{4290412862764970675978068709199}{45344097634351910637937188408314} a^{9} - \frac{36651458845201338959610723896897}{181376390537407642551748753633256} a^{8} + \frac{36523678037816889100029432670653}{181376390537407642551748753633256} a^{7} + \frac{18141690667111071464681111333397}{181376390537407642551748753633256} a^{6} - \frac{41286015249594634864262847620273}{362752781074815285103497507266512} a^{5} - \frac{17948800679363766074384516306143}{90688195268703821275874376816628} a^{4} - \frac{6584938028286202871809897186648}{22672048817175955318968594204157} a^{3} + \frac{53734986527056426043540407402507}{181376390537407642551748753633256} a^{2} - \frac{113327083269936290781878515177301}{362752781074815285103497507266512} a + \frac{18489615130404569297557466310885}{45344097634351910637937188408314}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 430410424025000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_{11}$ (as 22T6):
| A solvable group of order 220 |
| The 22 conjugacy class representatives for $C_2\times F_{11}$ |
| Character table for $C_2\times F_{11}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||