Normalized defining polynomial
\( x^{22} - x^{21} - 183 x^{20} + 183 x^{19} + 14537 x^{18} - 14537 x^{17} - 656695 x^{16} + 656695 x^{15} + 18561737 x^{14} - 18561737 x^{13} - 340182327 x^{12} + 340182327 x^{11} + 4049156809 x^{10} - 4049156809 x^{9} - 30438507831 x^{8} + 30438507831 x^{7} + 135102282441 x^{6} - 135102282441 x^{5} - 306339824951 x^{4} + 306339824951 x^{3} + 236973537993 x^{2} - 236973537993 x + 39405042377 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[22, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1002912833195191049488840533168697988824668713=23^{21}\cdot 31^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(713=23\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{713}(1,·)$, $\chi_{713}(619,·)$, $\chi_{713}(712,·)$, $\chi_{713}(247,·)$, $\chi_{713}(652,·)$, $\chi_{713}(526,·)$, $\chi_{713}(402,·)$, $\chi_{713}(404,·)$, $\chi_{713}(280,·)$, $\chi_{713}(156,·)$, $\chi_{713}(30,·)$, $\chi_{713}(32,·)$, $\chi_{713}(681,·)$, $\chi_{713}(683,·)$, $\chi_{713}(557,·)$, $\chi_{713}(466,·)$, $\chi_{713}(433,·)$, $\chi_{713}(94,·)$, $\chi_{713}(309,·)$, $\chi_{713}(311,·)$, $\chi_{713}(187,·)$, $\chi_{713}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5106687193} a^{12} - \frac{177687979}{5106687193} a^{11} - \frac{96}{5106687193} a^{10} + \frac{316480573}{5106687193} a^{9} + \frac{3456}{5106687193} a^{8} + \frac{85996050}{5106687193} a^{7} - \frac{57344}{5106687193} a^{6} - \frac{1203944700}{5106687193} a^{5} + \frac{430080}{5106687193} a^{4} + \frac{1772996807}{5106687193} a^{3} - \frac{1179648}{5106687193} a^{2} - \frac{794120014}{5106687193} a + \frac{524288}{5106687193}$, $\frac{1}{5106687193} a^{13} - \frac{104}{5106687193} a^{11} - \frac{1421503832}{5106687193} a^{10} + \frac{4160}{5106687193} a^{9} + \frac{1373188314}{5106687193} a^{8} - \frac{79872}{5106687193} a^{7} + \frac{2404224752}{5106687193} a^{6} + \frac{745472}{5106687193} a^{5} + \frac{245161882}{5106687193} a^{4} - \frac{2981888}{5106687193} a^{3} - \frac{980647528}{5106687193} a^{2} + \frac{3407872}{5106687193} a - \frac{1619327947}{5106687193}$, $\frac{1}{5106687193} a^{14} + \frac{525695124}{5106687193} a^{11} - \frac{5824}{5106687193} a^{10} - \frac{1459642445}{5106687193} a^{9} + \frac{279552}{5106687193} a^{8} + \frac{1134439566}{5106687193} a^{7} - \frac{5218304}{5106687193} a^{6} - \frac{2404594286}{5106687193} a^{5} + \frac{41746432}{5106687193} a^{4} - \frac{429718548}{5106687193} a^{3} - \frac{119275520}{5106687193} a^{2} - \frac{2500814315}{5106687193} a + \frac{54525952}{5106687193}$, $\frac{1}{5106687193} a^{15} - \frac{6720}{5106687193} a^{11} - \frac{2059782471}{5106687193} a^{10} + \frac{358400}{5106687193} a^{9} + \frac{2312731730}{5106687193} a^{8} - \frac{7741440}{5106687193} a^{7} - \frac{36551147}{108652919} a^{6} + \frac{77070336}{5106687193} a^{5} + \frac{2080134414}{5106687193} a^{4} - \frac{321126400}{5106687193} a^{3} + \frac{2141540082}{5106687193} a^{2} + \frac{377487360}{5106687193} a + \frac{2476008884}{5106687193}$, $\frac{1}{5106687193} a^{16} - \frac{1158198189}{5106687193} a^{11} - \frac{286720}{5106687193} a^{10} - \frac{426377191}{5106687193} a^{9} + \frac{15482880}{5106687193} a^{8} - \frac{880100718}{5106687193} a^{7} - \frac{308281344}{5106687193} a^{6} + \frac{564264126}{5106687193} a^{5} - \frac{2537675993}{5106687193} a^{4} - \frac{2327825340}{5106687193} a^{3} - \frac{2443060007}{5106687193} a^{2} + \frac{2477631489}{5106687193} a - \frac{1583471833}{5106687193}$, $\frac{1}{5106687193} a^{17} - \frac{348160}{5106687193} a^{11} + \frac{733714911}{5106687193} a^{10} + \frac{20889600}{5106687193} a^{9} - \frac{1789918846}{5106687193} a^{8} - \frac{481296384}{5106687193} a^{7} + \frac{2420946268}{5106687193} a^{6} - \frac{115465433}{5106687193} a^{5} - \frac{932879826}{5106687193} a^{4} - \frac{964201628}{5106687193} a^{3} - \frac{181261991}{5106687193} a^{2} + \frac{135704515}{5106687193} a - \frac{1655318005}{5106687193}$, $\frac{1}{5106687193} a^{18} - \frac{704397727}{5106687193} a^{11} - \frac{12533760}{5106687193} a^{10} + \frac{2203500666}{5106687193} a^{9} + \frac{721944576}{5106687193} a^{8} + \frac{48908547}{108652919} a^{7} + \frac{346396299}{5106687193} a^{6} + \frac{778544000}{5106687193} a^{5} + \frac{678522575}{5106687193} a^{4} + \frac{252547675}{5106687193} a^{3} - \frac{2035567725}{5106687193} a^{2} - \frac{1328076032}{5106687193} a - \frac{1304628868}{5106687193}$, $\frac{1}{5106687193} a^{19} - \frac{15876096}{5106687193} a^{11} + \frac{968252383}{5106687193} a^{10} + \frac{1016070144}{5106687193} a^{9} + \frac{807455160}{5106687193} a^{8} + \frac{1147752509}{5106687193} a^{7} + \frac{1690983542}{5106687193} a^{6} - \frac{327089979}{5106687193} a^{5} - \frac{1484061697}{5106687193} a^{4} + \frac{792682759}{5106687193} a^{3} + \frac{2122047253}{5106687193} a^{2} - \frac{1744479888}{5106687193} a + \frac{1871070002}{5106687193}$, $\frac{1}{5106687193} a^{20} - \frac{265425278}{5106687193} a^{11} - \frac{508035072}{5106687193} a^{10} + \frac{2130658275}{5106687193} a^{9} - \frac{158018838}{5106687193} a^{8} + \frac{201981406}{5106687193} a^{7} - \frac{1735618649}{5106687193} a^{6} - \frac{1064780565}{5106687193} a^{5} + \frac{1143273398}{5106687193} a^{4} + \frac{455681812}{5106687193} a^{3} + \frac{1379249828}{5106687193} a^{2} - \frac{1590769924}{5106687193} a - \frac{253504942}{5106687193}$, $\frac{1}{5106687193} a^{21} - \frac{666796032}{5106687193} a^{11} + \frac{2183267552}{5106687193} a^{10} - \frac{1507115937}{5106687193} a^{9} - \frac{1691952566}{5106687193} a^{8} + \frac{581990975}{5106687193} a^{7} + \frac{30268088}{108652919} a^{6} - \frac{663138180}{5106687193} a^{5} - \frac{326268270}{5106687193} a^{4} - \frac{2159406393}{5106687193} a^{3} + \frac{1429439534}{5106687193} a^{2} - \frac{719679620}{5106687193} a + \frac{2062142814}{5106687193}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3138976630957292.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{713}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | R | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 31 | Data not computed | ||||||